OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 26 - 50 of 155.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"power flow"×
Wind Energy×

Lidar HilFlowS LLNL ZephIR300 WOP Processed Data

**Overview** The ZephIR300 is a continuous wave LIDAR with a range of 10 m to 300 m. During HilFlowS the ZephIR300 was programmed to measure from 10 m to 150 m. In addition, the ZephIR300 provided a measurement at 1 m height using an onboard meteorological sensor. The ZephIR300 ...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

Lidar HilFlowS LLNL ZephIR300 MOP Processed Data

**Overview** The ZephIR300 is a continuous wave LIDAR with a range of 10 m to 300 m. During HilFlowS the ZephIR300 was programmed to measure from 10 m to 150 m. In addition, the ZephIR300 provided a measurement at 1 m height using an onboard meteorological sensor. The ZephIR300 ...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 6 Raw Data

**Overview** Sequence 6: Shroud Wake Measure (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s] Reynolds number regimes for the ci...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

2024 County-Level Hourly Renewable Capacity Factor Dataset for the ReEDS Model

This dataset contains hourly capacity factors for each renewable resource class and region (in this case, county). Technologies like large-scale utility PV (UPV), onshore (land-based) wind, offshore wind, and concentrating solar power (CSP) are included. Hourly profiles are provid...
Sergi, B. et al National Renewable Energy Laboratory (NREL)
Mar 25, 2025
9 Resources
0 Stars
Publicly accessible

Event-correlated Outage Dataset in America

This dataset includes an aggregated and event-correlated analysis of power outages in the United States, synthesized by integrating three data sources: the Environment for the Analysis of Geo-Located Energy Information (EAGLE-I), the Electric Emergency Incident Disturbance Report ...
She, B. et al Pacific Northwest National Laboratory
Oct 01, 2024
8 Resources
0 Stars
Publicly accessible

County-Level Hourly Renewable Capacity Factor Dataset for the ReEDS Model

This dataset contains hourly capacity factors for each renewable resource class and region (in this case, county). Technologies like large-scale utility PV (UPV), onshore wind, offshore wind, and concentrating solar power (CSP) are included. The dataset contains 7 years of hourly ...
Cole, W. et al National Renewable Energy Laboratory (NREL)
Aug 01, 2023
5 Resources
2 Stars
Publicly accessible

University of Louisiana at Lafayette

A partnership with the University of Louisiana and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global, direct, and diffuse irradiance t...
Andreas and RitterNational Renewable Energy Laboratory
Feb 13, 2024
1 Resources
0 Stars
Publicly accessible

University of Florida

A partnership with the University of Florida and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global, direct, and diffuse irradiance to ...
Andreas and ScheffeNational Renewable Energy Laboratory
Feb 13, 2024
1 Resources
0 Stars
Publicly accessible

INTEGRATE Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements

The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements) project is developing a new inverse-design capability for the aerodynamic design of wind turbine rotors using invertible neural networks. This AI-based design techno...
Vijayakumar, G. et al National Renewable Energy Laboratory (NREL)
May 04, 2021
8 Resources
0 Stars
Publicly accessible

ARPA-E PERFORM datasets

Time-coincident load, wind, and solar data including actual and probabilistic forecast datasets at 5-min resolution for ERCOT, MISO, NYISO, and SPP. Wind and solar profiles are supplied for existing sites as well as planned sites based on interconnection queue projects as of 2021....
Sergi, B. et al National Renewable Energy Laboratory (NREL)
Aug 18, 2022
3 Resources
1 Stars
Publicly accessible

Lidar HilFlowS LLNL WindCube v2 EOP Processed Data

**Overview** The WindCube v2 is a pulsed LIDAR and uses four beams sent in succession in the four cardinal directions along a 28°scanning cone angle to measure horizontal velocity and wind direction. A fifth beam is sent in the vertical direction to measure vertical velocity. Me...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

Surface Meteorological Station HilFlowS LLNL 52m tall tower EOP Processed Data

**Overview** The WindCube v2 was co-located with Site 300’s 52-m-tall meteorological tower so that measurements below 40 m could also be observed. The meteorological tower has three measurement levels: 10 m, 23 m, and 52 m. Wind speed was measured with a cup anemometer; wind di...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data

**Overview** Sequence 7: Shroud Operating (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

2024 Standard Scenarios: A U.S. Electricity Sector Outlook

This data corresponds to the 2024 Standard Scenarios report, which contains a suite of forward-looking scenarios of the possible evolution of the U.S. electricity sector through 2050. These files contain modeled projections of the future. Although we strive to capture relevant p...
Gagnon, P. et al National Renewable Energy Laboratory (NREL)
Dec 30, 2024
7 Resources
0 Stars
Publicly accessible

Wind Resources in Alaska

Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and...
AEDI, A. National Renewable Energy Laboratory
Dec 31, 2006
3 Resources
0 Stars
In curation

U.S. Wind Siting Regulation and Zoning Ordinances

A collection of documented wind siting ordinances at the state, county, township, and local level throughout the United States. The data were compiled from several sources including, DOE's Wind Exchange Ordinance Database (https://windexchange.energy.gov/policies-incentives), Nati...
Lopez, A. et al National Renewable Energy Laboratory (NREL)
Sep 25, 2019
1 Resources
0 Stars
Publicly accessible

Wind Resources by Class and Country At 50m

These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (Unite...
Heimiller, D. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
4 Resources
0 Stars
In curation

2017 Annual Technology Baseline (ATB): Cost and Performance Data for Electricity Generation Technologies

Each year since 2015, NREL has presented Annual Technology Baseline (ATB) in a spreadsheet that contains detailed cost and performance data (both current and projected) for renewable and conventional technologies. The spreadsheet includes a workbook for each technology. This sprea...
Hand. . et al National Renewable Energy Laboratory
Aug 21, 2017
1 Resources
0 Stars
Publicly accessible

Annual Average Modeled Wind Speed for Puerto Rico and the Virgin Islands at a 100 Meter Hub Height

This is supplemental data to the 50 m height data set that was validated by NREL and wind energy meteorological consultants in 2007. The data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m spatial re...
Heimiller, D. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
<< Previous123456Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service