OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 501 - 519 of 519.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"ENERGY STAR for homes"×
Wind Energy×

Radar NOAA 915 MHz Boundary-Layer Wind Profiler Raw Data

**Overview** Monitor real-time profiles of virtual temperature (C), wind speed (ms-1), and direction (deg) few km above ground level. **Data Details** Raw files contain radial velocity (ms-1), signal-to-noise ratio (dB), signal power (dB), spectral width (ms-1), and noise ampli...
Bianco, L. Wind Energy Technologies Office (WETO)
Feb 28, 2015
1 Resources
0 Stars
Publicly accessible

Sodar PNNL Scintec MFAS, Oregon Raceway Park Raw Data

**Overview** Provide measurements of wind speed and direction up to 400 m AGL (max). The data are stored in 2 forms: ASCII and raw (binary). ASCII files contain averaged data (currently 15 min time step and 10 m range gate); raw files could be reprocessed with the sodar software...
Pekour, M. and Berg, L. Wind Energy Technologies Office (WETO)
Oct 07, 2015
1 Resources
0 Stars
Publicly accessible

Lidar CU WindCube V1 Profiler, Troutdale Raw Data

**Overview** Wind and lidar turbulence profiles from 40 m to 220 m above the surface. **Data Quality** These two-minute-averaged data files consider the 1 Hz line-of-sight measurements that pass the 22 dB CNR quality control threshold. **Uncertainty** Line-of-sight measuremen...
Lundquist, J. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible

Lidar CU WindCube V1 Profiler, Wasco Airport Raw Data

**Overview** Wind and lidar turbulence profiles from 40 m to 220 m above the surface. **Data Quality** These two-minute-averaged data files consider the 1 Hz line-of-sight measurements that pass the 22 dB CNR quality control threshold. **Uncertainty** Line-of-sight measuremen...
Lundquist, J. Wind Energy Technologies Office (WETO)
Feb 22, 2016
1 Resources
0 Stars
Publicly accessible

Lidar CU WindCube V2 Profiler, Gordons Ridge Raw Data

**Overview** Wind and lidar turbulence profiles from 40 m to 220 m above the surface. **Data Quality** These two-minute-averaged data files consider the 1 Hz line-of-sight measurements that pass the 22 dB CNR quality control threshold. **Uncertainty** Line-of-sight measuremen...
Lundquist, J. Wind Energy Technologies Office (WETO)
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence G Raw Data

**Overview** Sequence G: Upwind Teetered (F) Test sequence G used an upwind, teetered turbine with a 0° cone angle. The wind speeds ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind speeds and angles of ±10° were achieved at the high wind speeds. Th...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

Sodar PNNL Scintec MFAS, Oregon Raceway Park Reviewed Data

**Overview** These data provide measurements of wind speed and direction up to 400 m above ground level (AGL) (max). The data are stored in two forms: ASCII and raw (binary). ASCII files contain averaged data (currently: 15 min time step and 10 m range gate). Raw files can be rep...
Pekour, M. and Berg, L. Wind Energy Technologies Office (WETO)
Oct 07, 2015
1 Resources
0 Stars
Publicly accessible

A Digital Surface Model (DSM) for United States

The dataset represents a digital surface models (DSM) representing surface heights on the Earth. The dataset covers the majority of the United States and is a derivative of USGS Lidar data collected mostly over the last decade. To the best of our knowledge it represents the only h...
Zisman, S. et al NREL
Jun 28, 2024
0 Resources
0 Stars
In progress

Lidar HilFlowS LLNL ZephIR300 WOP Processed Data

**Overview** The ZephIR300 is a continuous wave LIDAR with a range of 10 m to 300 m. During HilFlowS the ZephIR300 was programmed to measure from 10 m to 150 m. In addition, the ZephIR300 provided a measurement at 1 m height using an onboard meteorological sensor. The ZephIR300 ...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence F Raw Data

**Overview** Sequence F: Downwind High Cone (F) This test sequence used a downwind, rigid turbine with an 18° cone angle. The wind speed ranged from 10 m/s to 20 m/s. Excessive inertial loading due to the high cone angle prevented operation at lower wind speeds. Yaw angles of Â...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible

Lidar HilFlowS LLNL ZephIR300 MOP Processed Data

**Overview** The ZephIR300 is a continuous wave LIDAR with a range of 10 m to 300 m. During HilFlowS the ZephIR300 was programmed to measure from 10 m to 150 m. In addition, the ZephIR300 provided a measurement at 1 m height using an onboard meteorological sensor. The ZephIR300 ...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

Surface Meteorological Station HilFlowS LLNL 52m tall tower EOP Processed Data

**Overview** The WindCube v2 was co-located with Site 300’s 52-m-tall meteorological tower so that measurements below 40 m could also be observed. The meteorological tower has three measurement levels: 10 m, 23 m, and 52 m. Wind speed was measured with a cup anemometer; wind di...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data

**Overview** Sequence 7: Shroud Operating (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
<< Previous161718192021
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service