Search OEDI Data
Showing results 1 - 25 of 53.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Utah FORGE: Powder X-ray Diffraction Data from Well 16A(78)-32 Core
This dataset from Lawrence Livermore National Laboratory (LLNL) consists of four raw X-ray diffraction (XRD) scans and preliminary results of quantitative XRD analysis. The scanned samples were prepared from four subcores, which came from various depths of the FORGE well 16A(78)-3...
Kroll, K. et al Lawrence Livermore National Laboratory
Jul 27, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Using Fully Coupled Hydro-Geomechanical Numerical Test Bed to Study Reservoir Stimulation with Low Hydraulic Pressure
This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimu...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 31, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in ...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small nu...
Fu, P. and Carrigan, C. Lawrence Livermore National Laboratory
Jan 01, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Generalized Displacement Correlation Method for Estimating Stress Intensity Factors
This paper presents a generalized form of the displacement correlation method (the GDC method), which can use any linear or quadratic finite element type with homogeneous meshing without local refinement. These two features are critical for modeling dynamic fracture propagation pr...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Grain-Scale Failure in Thermal Spallation Drilling
Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Geomechanical Modeling for Thermal Spallation Drilling
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling,...
Walsh, S. et al Lawrence Livermore National Laboratory
Aug 24, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Chemical Impact of Elevated CO2 on Geothermal Energy Production
Numerical simulations have shown that the use of supercritical CO2 instead of water as a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal energy production and...
Carroll, S. et al Lawrence Livermore National Laboratory
Jan 01, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2000
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the ...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal ...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
Applications of Geothermally-Produced Colloidal Silica in Reservoir Management Smart Gels
In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances r...
Hunt, J. et al Lawrence Livermore National Laboratory
Jan 31, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Rates
Spreadsheets provides measured chlorite rate data from 100 to 300 degrees C at elevated CO2. Spreadsheet includes derived rate equation.
Carroll, S. Lawrence Livermore National Laboratory
Jul 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Kinetics of Chlorite Dissolution at Elevated Temperatures and CO2 Conditions
Chlorite dissolution kinetics were measured under far from equilibrium conditions using a mixed-flow reactor over temperatures of 100-275 degrees C at pH values of 3.0-5.7 in a background solution matrix of 0.05 m NaCl. Over this temperature range, magnesium was released congruent...
Carroll, S. et al Lawrence Livermore National Laboratory
Jul 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10
We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in...
Lawrence Livermore National Laboratory
Sep 27, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Oct 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microearthquake Studies at the Salton Sea Geothermal Field
The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information w...
Templeton, D. Lawrence Livermore National Laboratory
Oct 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Kinetics at Variable pH and Temperatures up to 275C
FY13 annual report describing the calculations and results associated with the data and dissolution rate contained in "Chlorite Kinetic Dissolution Data and Rate" (linked below).
Carroll, S. and Smith, M. Lawrence Livermore National Laboratory
Oct 01, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Brady 1D Seismic Velocity Model Ambient Noise Prelim
Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 ...
J., R. Lawrence Livermore National Laboratory
Oct 25, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Nov 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible