Search OEDI Data
Showing results 26 - 50 of 241.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
UAE6 Wind Tunnel Tests Data UAE6 Sequence X Raw Data
**Overview**
Sequence X: Elevated RPM (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 12 m/s, and yaw angles of ±30° were obtained. The blade pitch angle was 3°. The
rotor rotated at 90 RPM. Blade pressure measur...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 29, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 5 Raw Data
**Overview**
Sequence 5: Sweep Wind Speed (F,P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed was
ramped from 5 m/s to 25 m/s by the wind tunnel operator. This was repeated with a decreasing
ramp. The yaw angle was maintained at 0°. The ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data
**Overview**
Sequence 7: Shroud Operating (P)
This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was
maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence M Raw Data
**Overview**
Sequence M: Transition Fixed (P)
Test sequence M used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from
5 m/s to 15 m/s. Yaw angles ranged from 0° to 90°. The blade tip pitch was 3°. The rotor rotated
at 72 RPM. Blade pressure measurement...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data
**Overview**
Sequence V: Tip Plate (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data
**Overview**
Sequence W: Extended Blade (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence Q Raw Data
**Overview**
Sequence Q: Dynamic Inflow (P)
This sequence was designed to characterize the dynamic inflow variation using the five-hole
probes that extend upwind of the leading edge of the blade. This test sequence used an upwind,
rigid turbine with a 0° cone angle. The wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence L Raw Data
**Overview**
Sequence L: Step AOA, Parked (P)
This sequence was designed to quantify the 3-D blade static angle-of-attack response in the
absence of rotational influences by varying the blade pitch angle. This test sequence used an
upwind, rigid turbine with a 0° cone angle. Wi...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence R Raw Data
**Overview**
Sequence R: Step AOA, No Probes (P)
This sequence was designed to quantify the effect of the five-hole probes on the 3-D blade static
angle-of-attack response in the presence of rotational influences by repeating Sequence K without
five-hole probes. This test sequen...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 3 Raw Data
**Overview**
Sequence 3: Tower Wake Measure (P)
Sequence 3 used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this
sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s]
Reynolds number regimes for the circular cr...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence K Raw Data
**Overview**
Sequence K: Step AOA, Probes (P)
This sequence was designed to quantify the 3-D blade static angle-of-attack response in the
presence of rotational influences by varying the blade pitch angle. Sequence K used an upwind,
rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer CU Radiometrics MWR, Condon Raw Data
**Overview**
These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km.
**Data Details**
All output files are named automatically using the following format:
yyyy-mm-dd_hh-mm-ss_xxx.csv,
where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer CU Radiometrics MWR, Condon Reviewed Data
**Overview**
These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km.
**Data Details**
All output files are named automatically using the following format:
yyyy-mm-dd_hh-mm-ss_xxx.csv,
where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer ESRL Radiometrics MWR, Troutdale Raw Data
**Overview**
These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km.
**Data Details**
All output files are named automatically using the following format:
yyyy-mm-dd_hh-mm-ss_xxx.csv,
where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer ESRL Radiometrics MWR, Troutdale Reviewed Data
**Overview**
These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km.
**Data Details**
All output files are named automatically using the following format:
yyyy-mm-dd_hh-mm-ss_xxx.csv,
where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer ESRL Radiometrics MWR, Wasco Airport Raw Data
**Overview**
These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km.
**Data Details**
All output files are named automatically using the following format:
yyyy-mm-dd_hh-mm-ss_xxx.csv,
where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer ESRL Radiometrics MWR, Wasco Airport Reviewed Data
**Overview**
These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km.
**Data Details**
All output files are named automatically using the following format:
yyyy-mm-dd_hh-mm-ss_xxx.csv,
where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer UND Radiometrics MWR, Rufus Raw Data
**Overview**
These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km.
**Data Details**
All output files are named automatically using the following format:
yyyy-mm-dd_hh-mm-ss_xxx.csv,
where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Shortwave, Longwave Radiometer ESRL RadSys, Condon Derived Data
**Overview**
This dataset showcases the role of shortwave and longwave radiation in planetary boundary layer (PBL) development and winds. Radiation budget is part of the energy budget.
**Data Details**
Wasco Airport, OR: 45.58991, 120.67196, 1488 ft
**Data Quality**
Refer t...
Lantz, K. and Long, C. Wind Energy Technologies Office (WETO)
Feb 22, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible