Search OEDI Data
Showing results 226 - 249 of 249.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Net Power (Annual Average)
This shapefile represents annual average net power estimates.
The OTEC Plant model predicts the net power production at a specific location, given three inputs: surface temperature (°C), depth (m), and difference between warm surface water temperature and cold deep sea water t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
DAISY Variant and Tether Tests, Admirality Inlet, WA
Acoustic data and metadata from Drifting Acoustic Instrumentation SYstem (DAISY) testing in Admiralty Inlet (connecting Puget Sound to the Strait of San Juan de Fuca) in July 2022. Tests focused on occurrences of flow noise for three hydrophone package variants and on the potentia...
Crisp, C. et al University of Washington
Jul 14, 2022
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
ALFA Coupled Computational Fluid Dynamics/Discrete Element Method Modeling System
The HDIS/COUPi discrete element method modeling system was used to simulate the interaction between various debris and the Research Debris Diversion Platform (RDDP)
DUVOY, P. University of Alaska Fairbanks
Nov 29, 2016
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Control of an AUV with deployable energy-harvesting kite
This paper examines the control of an autonomous underwater vehicle (AUV) with a deployable energy-harvesting kite for oceanographic observation and surveillance. The proposed design and control strategies specifically address objectives of achieving high-payload, long-endurance A...
Reed, J. et al North Carolina State University
Sep 02, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Control-based optimization for tethered tidal kite
This submission includes three peer-reviewed (under review) papers from the researchers at North Carolina State University presenting control-based techniques to maximize effectiveness of a tethered tidal kite. Below are the abstracts of each file included in the submission.
Cobb...
Vermillion, C. et al North Carolina State University
Mar 02, 2020
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Virtual Flow Solver Geophysics: A 3D Incompressible Navier-Stokes Solver
Virtual Flow Solver Geophysics (VFS-Geophysics) is a three-dimensional (3D) incompressible Navier-Stokes solver based on the Curvilinear Immersed Boundary (CURVIB) method. The CURVIB is a sharp interface type of immersed boundary (IB) method that enables the simulation of fluid f...
Khosronejad, A. et al Stony Brook University
Jul 17, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Advanced TidGen Power System LCOE Calculations and System Overview
The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Reference Model 1 Cost Breakdown (RM1: Tidal Current Turbine)
Contains the Reference Model 1 (RM1) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM1 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Net Shape Fabricated Low Cost MHK Pass-Through the Hub Turbine Blades with Integrated Health Management Technology
The primary objective of this project is to develop a three-blade MHK rotor with low manufacturing and maintenance costs. The proposed program will design, fabricate and test a novel half-scale low cost, net shape fabricated single piece three-blade MHK rotor with integrated healt...
Wess, D. ARL Penn State
Feb 09, 2016
24 Resources
0 Stars
Publicly accessible
24 Resources
0 Stars
Publicly accessible
Global Energy & Mining Data, World Bank (1970 2007)
Alternative and Nuclear Energy: Percentage of Total Energy Use Combustible Renewables and Waste: Metric Tons of Oil Equivalent Combustible Renewable and Waste: Percentage of Total Energy Electric Power Consumption Electric Power Transmission and Distribution Losses Electric Power ...
Brodt-Giles, D. and Bank, W. National Renewable Energy Laboratory
Oct 12, 2013
4 Resources
0 Stars
In curation
4 Resources
0 Stars
In curation
Energy Innovation Portal
About the Energy Innovation Portal. The Energy Innovation Portal is a one-stop resource for Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) technologies. This application enables users to locate technologies developed with DOE funding and available for lic...
Webmaster, . and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
1 Resources
0 Stars
In curation
1 Resources
0 Stars
In curation
Admiralty Inlet Advanced Turbulence Measurements: Final Data and Code Archive
Data and code that is not already in a public location that is used in Kilcher, Thomson, Harding, and Nylund (2017) "Turbulence Measurements from Compliant Moorings Part II: Motion Correction" doi: 10.1175/JTECH-D-16-0213.1.
The links point to Python source code used in the publi...
Kilcher, L. et al National Renewable Energy Laboratory
Feb 01, 2011
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Reference Model 1 Full Scale Geometry (RM1: Tidal Current Turbine)
Contains the Reference Model 1 (RM1) full scale geometry files of the Tidal Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, X_T, IGS, and STEP files, and require a CAD program to view. This data was...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Admiralty Inlet Advanced Turbulence Measurements: May 2015
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). Thes...
Kilcher, L. National Renewable Energy Laboratory
May 18, 2015
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Aquantis 2.5 MW Ocean Current Generation Device Scaled Tank Test Design and Results
Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This datase...
Swales, H. et al Dehlsen Associates, LLC
Jun 03, 2015
46 Resources
0 Stars
Publicly accessible
46 Resources
0 Stars
Publicly accessible
Admiralty Inlet Advanced Turbulence Measurements: June 2014
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid...
Kilcher, L. National Renewable Energy Laboratory
Jun 30, 2014
26 Resources
0 Stars
Publicly accessible
26 Resources
0 Stars
Publicly accessible
UNH TDP Concurrent Measurements of Inflow, Power Performance, and Loads for a Grid-Synchronized Vertical Axis Cross-Flow Turbine Operating in a Tidal Estuary
This data was collected between October 12 and December 15 of 2021 at the University of New Hampshire (UNH) and Atlantic Marine Energy Center (AMEC) turbine deployment platform (TDP). This data set includes over 29 days of grid connected turbine operation during this 65 day time f...
Wosnik, M. et al National Renewable Energy Laboratory
Dec 21, 2021
30 Resources
0 Stars
Publicly accessible
30 Resources
0 Stars
Publicly accessible