OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 1 - 25 of 235.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"Run In Hole"×
A2E×

UAE6 Wind Tunnel Tests Data UAE6 Sequence R Raw Data

**Overview** Sequence R: Step AOA, No Probes (P) This sequence was designed to quantify the effect of the five-hole probes on the 3-D blade static angle-of-attack response in the presence of rotational influences by repeating Sequence K without five-hole probes. This test sequen...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 6 Raw Data

**Overview** Sequence 6: Shroud Wake Measure (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s] Reynolds number regimes for the ci...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data

**Overview** Sequence 7: Shroud Operating (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_esrl.graphics.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_wfip2.icbc.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_esrl.icbc.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.rap_esrl.icbc.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_wfip2.graphics.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.coldstart.icbc.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

Analysis of a fixed-bottom cylinder in a wave basin

**Overview** The Offshore Code Comparison, Collaboration, Continued, with Correlation (OC5) is an international research project run under the International Energy Agency (IEA) Wind Task 30. The project is focused on validating the tools used design offshore wind systems. OC5 con...
Robertson, A. Wind Energy Technologies Office (WETO)
Jul 22, 2019
1 Resources
0 Stars
Publicly accessible

Analysis of a suspended cylinder in a wave basin

**Overview** The Offshore Code Comparison, Collaboration, Continued, with Correlation (OC5) is an international research project run under the International Energy Agency (IEA) Wind Task 30. The project is focused on validating the tools used design offshore wind systems. OC5 con...
Robertson, A. Wind Energy Technologies Office (WETO)
Jul 22, 2019
1 Resources
0 Stars
Publicly accessible

Analysis of a scaled wind turbine on a floating semisubmersible in an ocean basin

**Overview** The Offshore Code Comparison, Collaboration, Continued, with Correlation (OC5) is an international research project run under the International Energy Agency (IEA) Wind Task 30. The project is focused on validating the tools used design offshore wind systems. OC5 con...
Robertson, A. Wind Energy Technologies Office (WETO)
Jul 23, 2019
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence X Raw Data

**Overview** Sequence X: Elevated RPM (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 12 m/s, and yaw angles of ±30° were obtained. The blade pitch angle was 3°. The rotor rotated at 90 RPM. Blade pressure measur...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 29, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 5 Raw Data

**Overview** Sequence 5: Sweep Wind Speed (F,P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed was ramped from 5 m/s to 25 m/s by the wind tunnel operator. This was repeated with a decreasing ramp. The yaw angle was maintained at 0°. The ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence M Raw Data

**Overview** Sequence M: Transition Fixed (P) Test sequence M used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 15 m/s. Yaw angles ranged from 0° to 90°. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade pressure measurement...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data

**Overview** Sequence V: Tip Plate (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data

**Overview** Sequence W: Extended Blade (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
12345Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service