Search OEDI Data
Showing results 1 - 19 of 19.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Using Fully Coupled Hydro-Geomechanical Numerical Test Bed to Study Reservoir Stimulation with Low Hydraulic Pressure
This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimu...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 31, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small nu...
Fu, P. and Carrigan, C. Lawrence Livermore National Laboratory
Jan 01, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Geomechanical Modeling for Thermal Spallation Drilling
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling,...
Walsh, S. et al Lawrence Livermore National Laboratory
Aug 24, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Generalized Displacement Correlation Method for Estimating Stress Intensity Factors
This paper presents a generalized form of the displacement correlation method (the GDC method), which can use any linear or quadratic finite element type with homogeneous meshing without local refinement. These two features are critical for modeling dynamic fracture propagation pr...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in ...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chemical Impact of Elevated CO2 on Geothermal Energy Production
Numerical simulations have shown that the use of supercritical CO2 instead of water as a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal energy production and...
Carroll, S. et al Lawrence Livermore National Laboratory
Jan 01, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article
This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for ...
A., T. Lawrence Livermore National Laboratory
Jun 01, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE: Powder X-ray Diffraction Data from Well 16A(78)-32 Core
This dataset from Lawrence Livermore National Laboratory (LLNL) consists of four raw X-ray diffraction (XRD) scans and preliminary results of quantitative XRD analysis. The scanned samples were prepared from four subcores, which came from various depths of the FORGE well 16A(78)-3...
Kroll, K. et al Lawrence Livermore National Laboratory
Jul 27, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process
The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into ...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jul 01, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Value of Information References
This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.
Morency, C. Lawrence Livermore National Laboratory
Dec 12, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Great Salt Lake Composition and Rare Earth Speciation Analysis
We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would ...
Jiao, Y. et al Lawrence Livermore National Laboratory
Apr 19, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Rare Earth Desorption Test with Citrate and Bicarbonate
LBT (lanthanide binding tag) cells were grown overnight in LB media with 0.05% Amp. 1:100 subculture taken from overnights, grown for 2 hours. LBT was induced with 0.002% arabinose added for 3 hours. REE adsorption was done by combining 350 ul (0.25% 1M MES, 12.5 uM Tb, and 12.5 u...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jun 01, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption
We summarized the FY17 and part of FY18 results of the analysis of the effect of several parameters (e.g., total dissolved solids, specific competing metals, pH, and temperature) on REE recovery from geothermal brine in a manuscript that was submitted to Environmental Science & Te...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jan 01, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Conductance Steamflow Relationship
These histograms represent our calibration of conductance of a volcanic geothermal field (with a clay cap) and the observed steam flow rates. Darajat is a vapor geothermal field located in West Java, Indonesia. First production from the field was started in 1994 and additional cap...
Trainor-Guitton, W. Lawrence Livermore National Laboratory
Apr 01, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal ...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible