OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 51 - 75 of 78.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"hydrualic pressure"×
A2E×

Lidar HilFlowS LLNL ZephIR300 MOP Processed Data

**Overview** The ZephIR300 is a continuous wave LIDAR with a range of 10 m to 300 m. During HilFlowS the ZephIR300 was programmed to measure from 10 m to 150 m. In addition, the ZephIR300 provided a measurement at 1 m height using an onboard meteorological sensor. The ZephIR300 ...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 6 Raw Data

**Overview** Sequence 6: Shroud Wake Measure (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s] Reynolds number regimes for the ci...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence X Raw Data

**Overview** Sequence X: Elevated RPM (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 12 m/s, and yaw angles of ±30° were obtained. The blade pitch angle was 3°. The rotor rotated at 90 RPM. Blade pressure measur...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 29, 2018
1 Resources
0 Stars
Publicly accessible

Additional Data Focused on Phase 1 Geared Toward Computational Fluid Dynamics (CFD) validation

**Overview** A new validation campaign was developed within the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) to better understand the complex interactions between components of a floating wind system (e.g., columns, pontoons, etc.) in ...
Robertson, A. Wind Energy Technologies Office (WETO)
Apr 08, 2021
1 Resources
0 Stars
Publicly accessible

Surface Meteorological Station HilFlowS LLNL 52m tall tower EOP Processed Data

**Overview** The WindCube v2 was co-located with Site 300’s 52-m-tall meteorological tower so that measurements below 40 m could also be observed. The meteorological tower has three measurement levels: 10 m, 23 m, and 52 m. Wind speed was measured with a cup anemometer; wind di...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 5 Raw Data

**Overview** Sequence 5: Sweep Wind Speed (F,P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed was ramped from 5 m/s to 25 m/s by the wind tunnel operator. This was repeated with a decreasing ramp. The yaw angle was maintained at 0°. The ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data

**Overview** Sequence 7: Shroud Operating (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence M Raw Data

**Overview** Sequence M: Transition Fixed (P) Test sequence M used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 15 m/s. Yaw angles ranged from 0° to 90°. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade pressure measurement...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence Q Raw Data

**Overview** Sequence Q: Dynamic Inflow (P) This sequence was designed to characterize the dynamic inflow variation using the five-hole probes that extend upwind of the leading edge of the blade. This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence N Raw Data

**Overview** Sequence N: Sin AOA, Rotating (P) This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the presence of rotational influences by varying blade pitch angle. Test sequence N used an upwind, rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence O Raw Data

**Overview** Sequence O: Sin AOA, Parked (P) This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the absence of rotational influences by varying blade pitch angle. This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence K Raw Data

**Overview** Sequence K: Step AOA, Probes (P) This sequence was designed to quantify the 3-D blade static angle-of-attack response in the presence of rotational influences by varying the blade pitch angle. Sequence K used an upwind, rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence L Raw Data

**Overview** Sequence L: Step AOA, Parked (P) This sequence was designed to quantify the 3-D blade static angle-of-attack response in the absence of rotational influences by varying the blade pitch angle. This test sequence used an upwind, rigid turbine with a 0° cone angle. Wi...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence E Raw Data

**Overview** Sequence E: Yaw Releases (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds ranged from 7 m/s to 17 m/s. Initial yaw angles of ±90° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade and probe...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence R Raw Data

**Overview** Sequence R: Step AOA, No Probes (P) This sequence was designed to quantify the effect of the five-hole probes on the 3-D blade static angle-of-attack response in the presence of rotational influences by repeating Sequence K without five-hole probes. This test sequen...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

Microwave Radiometer CU Radiometrics MWR, Condon Reviewed Data

**Overview** These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km. **Data Details** All output files are named automatically using the following format: yyyy-mm-dd_hh-mm-ss_xxx.csv, where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible

Microwave Radiometer ESRL Radiometrics MWR, Wasco Airport Reviewed Data

**Overview** These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km. **Data Details** All output files are named automatically using the following format: yyyy-mm-dd_hh-mm-ss_xxx.csv, where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible

Microwave Radiometer ESRL Radiometrics MWR, Troutdale Raw Data

**Overview** These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km. **Data Details** All output files are named automatically using the following format: yyyy-mm-dd_hh-mm-ss_xxx.csv, where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible

Microwave Radiometer UND Radiometrics MWR, Rufus Raw Data

**Overview** These data monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) up to 10 km. **Data Details** All output files are named automatically using the following format: yyyy-mm-dd_hh-mm-ss_xxx.csv, where yyyy...
Bianco, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
<< Previous1234Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service