Search OEDI Data
Showing results 326 - 350 of 504.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
UAE6 Wind Tunnel Tests Data UAE6 Sequence 5 Raw Data
**Overview**
Sequence 5: Sweep Wind Speed (F,P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed was
ramped from 5 m/s to 25 m/s by the wind tunnel operator. This was repeated with a decreasing
ramp. The yaw angle was maintained at 0°. The ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Sodar St. James, MN Processed Data
**Overview**
This dataset was produced from the raw sodar .wtb files from the St. James, MN site during the WFIP1 campaign. Quality control and formatting have been applied to transform the numerous raw files into a single file to provide user friendliness and improved wind reso...
Sheridan, L. Wind Energy Technologies Office (WETO)
Jul 27, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence M Raw Data
**Overview**
Sequence M: Transition Fixed (P)
Test sequence M used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from
5 m/s to 15 m/s. Yaw angles ranged from 0° to 90°. The blade tip pitch was 3°. The rotor rotated
at 72 RPM. Blade pressure measurement...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data
**Overview**
Sequence W: Extended Blade (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station SWiFT southwest METa1 Reviewed Data
**Overview**
Scaled Wind Farm Technology (SWiFT) Facility meteorological tower (MET), turbine, and Technical University of Denmark (DTU) SpinnerLidar data acquired on 20161216 UTC during a neutral atmospheric boundary layer inflow at a single focus distance of 2.5 D (D=27 m).
**...
Kelley, C. and Naughton, B. Wind Energy Technologies Office (WETO)
Dec 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence Q Raw Data
**Overview**
Sequence Q: Dynamic Inflow (P)
This sequence was designed to characterize the dynamic inflow variation using the five-hole
probes that extend upwind of the leading edge of the blade. This test sequence used an upwind,
rigid turbine with a 0° cone angle. The wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence O Raw Data
**Overview**
Sequence O: Sin AOA, Parked (P)
This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the
absence of rotational influences by varying blade pitch angle. This test sequence used an upwind,
rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence P Raw Data
**Overview**
Sequence P: Wake Flow Visualization, Upwind (P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 15 m/s. Yaw angles of 0° to –60° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Cold-front (D01)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 19, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Cold-front (D02)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 19, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Sea-breeze (D01)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Sea-breeze (D02)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 8 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 9 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar ESRL Wind Profiler with RASS, Wasco Airport Derived Data
**Overview**
Profiles of turbulence dissipation rate for 15-minute intervals, time-stamped at the beginning of the 15-minute period, during the final 30 minutes of each hour. During that time, the 915-MHz wind profiling radar was in an optimized configuration with a vertically po...
McCaffrey, K. Wind Energy Technologies Office (WETO)
Oct 12, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible