Search OEDI Data
Showing results 26 - 50 of 98.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
LCOE Content Model for the Heaving Point Absorber Buoy
This is the LCOE analysis spreadsheet and content model for the heaving point absorber buoy developed for controls purposes. The cost assessment was done on a wave-farm of 100-units.
Previsic, M. and Karthikeyan, A. Re Vision Consulting
Jul 14, 2017
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Reference Model 5 Cost Breakdown (RM5: Oscillating Surge Flap)
Contains the Reference Model 5 (RM5) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM5 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Reference Model 2 Cost Breakdown (RM2: River Current Turbine)
Contains the Reference Model 2 (RM2) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM2 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Reference Model 6 Cost Breakdown (RM6: Oscillating Water Column)
Contains the Reference Model 6 (RM6) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM6 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
2021 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
Starting in 2015 NREL has presented the Annual Technology Baseline (ATB) in an Excel workbook that contains detailed cost and performance data, both current and projected, for renewable and conventional technologies. The workbook includes a spreadsheet for each technology. This ve...
Vimmerstedt, L. et al National Renewable Energy Laboratory (NREL)
Jul 12, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Reference Model 4 Cost Breakdown (RM4: Ocean Current Turbine)
Contains the Reference Model 4 (RM4) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM4 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
LCOE Baseline for OE Buoy WEC Device
Capex numbers are in $/kW, Opex numbers in $/kW-yr. Cost Estimates provided herein are based on concept design and basic engineering data and have high levels of uncertainties embedded. This reference economic scenario was done for a very large device version of the Ocean Energy ...
Previsic, M. et al Re Vision Consulting
Jul 26, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
2023 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2023 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 09, 2023
13 Resources
0 Stars
Publicly accessible
13 Resources
0 Stars
Publicly accessible
2022 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2022 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Vimmerstedt, L. et al National Renewable Energy Laboratory (NREL)
Jun 01, 2022
14 Resources
0 Stars
Publicly accessible
14 Resources
0 Stars
Publicly accessible
2024 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2024 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 24, 2024
11 Resources
0 Stars
Curated
11 Resources
0 Stars
Curated
Early Market Opportunity MHK Energy Site Identification Wave and Tidal Resources
This data was compiled for the 'Early Market Opportunity Hot Spot Identification' project. The data and scripts included were used in the 'MHK Energy Site Identification and Ranking Methodology' Reports (see resources below). The Python scripts will generate a set of results--base...
Kilcher, L. National Renewable Energy Laboratory
Apr 01, 2016
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Centipod WEC, Survivable Wave Energy Converters, Final Technical Report
This project shows that the choice of a secondary DOF for survivability is a viable option to reduce the levelized cost of energy (LCOE) in WEC designs. This report will cover the calculation of the concluded LCOE advantage using Dehlsen Associates’ “Centipod” WEC, but will ...
McCall, A. Dehlsen Associates, LLC
Oct 16, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
M3 Wave DMP/APEX WEC Final Technical Report
This project successfully developed methods for numerical modeling of sediment transport phenomena around rigid objects resting on or near the ocean floor. These techniques were validated with physical testing using actual sediment in a large wave tank. These methods can be applie...
Morrow, M. et al M3 Wave
May 31, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
M3 Wave DMP/APEX WEC Survival Test Report
This survival test report for the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX," summarizes the key tank test data, numerical model results, input test conditions (both numerical and tank testing), and crosses these items with three designs of t...
Morrow, M. and Delos-Reyes, M. M3 Wave
Aug 31, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Open Energy Information (OpenEI.org)
Open Energy Information (OpenEI) is a knowledge-sharing online community dedicated to connecting people with the latest information and data on energy resources from around the world. Created in partnership with the United States Department of Energy and federal laboratories acros...
Brodt-Giles, D. and (EERE), O. National Renewable Energy Laboratory
Nov 25, 2014
1 Resources
0 Stars
In curation
1 Resources
0 Stars
In curation
Aquantis 2.5 MW Ocean Current Generation Device Scaled Tank Test Design and Results
Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This datase...
Swales, H. et al Dehlsen Associates, LLC
Jun 03, 2015
46 Resources
0 Stars
Publicly accessible
46 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation