Search OEDI Data
Showing results 26 - 50 of 73.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Wind Turbine Structure Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from structures based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a structure that an energy project may be developed, and these varied widely across the counties in which...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Wind Turbine Railroad Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from railroad based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a railroad that an energy project may be developed, and these varied widely across the counties in which th...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Wind Turbine Road Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from roads based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a road that an energy project may be developed, and these varied widely across the counties in which they exis...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications
Many weather years of high-quality wind data are widely accepted in the grid integration community to be important for studying wind energy technical potential, energy system operations, and grid resilience.
NREL makes high-quality wind and solar resource data available. NREL's G...
Buster, G. et al The National Renewable Energy Lab (NREL)
Oct 15, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Lidar CU WindCube V1 Profiler, Troutdale Raw Data
**Overview**
Wind and lidar turbulence profiles from 40 m to 220 m above the surface.
**Data Quality**
These two-minute-averaged data files consider the 1 Hz line-of-sight measurements that pass the 22 dB CNR quality control threshold.
**Uncertainty**
Line-of-sight measuremen...
Lundquist, J. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar CU WindCube V1 Profiler, Wasco Airport Raw Data
**Overview**
Wind and lidar turbulence profiles from 40 m to 220 m above the surface.
**Data Quality**
These two-minute-averaged data files consider the 1 Hz line-of-sight measurements that pass the 22 dB CNR quality control threshold.
**Uncertainty**
Line-of-sight measuremen...
Lundquist, J. Wind Energy Technologies Office (WETO)
Feb 22, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar CU WindCube V2 Profiler, Gordons Ridge Raw Data
**Overview**
Wind and lidar turbulence profiles from 40 m to 220 m above the surface.
**Data Quality**
These two-minute-averaged data files consider the 1 Hz line-of-sight measurements that pass the 22 dB CNR quality control threshold.
**Uncertainty**
Line-of-sight measuremen...
Lundquist, J. Wind Energy Technologies Office (WETO)
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC)
The Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC) data is a collection of 4km hourly wind, solar, temperature, humidity, and pressure fields for the contiguous United States under various climate change scenarios.
Sup3rCC is downscaled ...
Buster, G. et al The National Renewable Energy Lab (NREL)
Apr 19, 2023
7 Resources
1 Stars
Curated
7 Resources
1 Stars
Curated
Wind Turbine Water Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from water based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from water that an energy project may be developed, and these varied widely across the counties in which they exist...
Geospatial Data Science, N. and Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
UAE6 Wind Tunnel Tests Data UAE6 Sequence 6 Raw Data
**Overview**
Sequence 6: Shroud Wake Measure (P)
This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for
this sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s]
Reynolds number regimes for the ci...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar HilFlowS LLNL ZephIR300 MOP Processed Data
**Overview**
The ZephIR300 is a continuous wave LIDAR with a range of 10 m to 300 m. During HilFlowS the ZephIR300 was programmed to measure from 10 m to 150 m. In addition, the ZephIR300 provided a measurement at 1 m height using an onboard meteorological sensor. The ZephIR300 ...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar HilFlowS LLNL ZephIR300 WOP Processed Data
**Overview**
The ZephIR300 is a continuous wave LIDAR with a range of 10 m to 300 m. During HilFlowS the ZephIR300 was programmed to measure from 10 m to 150 m. In addition, the ZephIR300 provided a measurement at 1 m height using an onboard meteorological sensor. The ZephIR300 ...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar HilFlowS LLNL WindCube v2 EOP Processed Data
**Overview**
The WindCube v2 is a pulsed LIDAR and uses four beams sent in succession in the four cardinal directions along a 28°scanning cone angle to measure horizontal velocity and wind direction. A fifth beam is sent in the vertical direction to measure vertical velocity. Me...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Airfoil Computational Fluid Dynamics 9k shapes, 2 AoA's
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 8,996 airfoil shapes, computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes ...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Airfoil Computational Fluid Dynamics 2k shapes, 25 AoA's, 3 Re numbers
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 1,830 airfoil shapes computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes w...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data
**Overview**
Sequence 7: Shroud Operating (P)
This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was
maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station HilFlowS LLNL 52m tall tower EOP Processed Data
**Overview**
The WindCube v2 was co-located with Site 300’s 52-m-tall meteorological tower so that measurements below 40 m could also be observed. The meteorological tower has three measurement levels: 10 m, 23 m, and 52 m. Wind speed was measured with a cup anemometer; wind di...
Wharton, S. and , . Wind Energy Technologies Office (WETO)
Jul 07, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
2023 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2023 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 09, 2023
13 Resources
0 Stars
Publicly accessible
13 Resources
0 Stars
Publicly accessible
2024 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2024 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 24, 2024
11 Resources
0 Stars
Curated
11 Resources
0 Stars
Curated