Search OEDI Data
Showing results 26 - 50 of 74.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar 449MHz Astoria, OR (AST) Reviewed Data
**Overview**
**Winds.**
A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities...
Gottas, D. Wind Energy Technologies Office (WETO)
Sep 02, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar 449MHz Forks, WA (FKS) Reviewed Data
**Overview**
**Winds.**
A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities...
Gottas, D. Wind Energy Technologies Office (WETO)
Jul 23, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar 449MHz North Bend, OR (OTH) Raw Data
**Overview**
**Winds.**
A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar 449MHz North Bend, OR (OTH) Reviewed Data
**Overview**
**Winds.**
A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 3m Tower, Physics site-7 Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Feb 17, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Grass Valley Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Sep 22, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Hood River Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Sep 21, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Rufus Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Sep 23, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Umatilla Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 3m Tower, Physics site-8 Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Feb 14, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data
**Overview**
Sequence V: Tip Plate (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data
**Overview**
Sequence W: Extended Blade (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Owner Reports Airfoil Performance Degradation due to Roughness and Leading-edge Erosion, data and plots Raw Data
**Overview**
Airfoil Performance Degradation due to Roughness and Leading-edge Erosion. The zip file contains analysis, charts, and photos.
Maniaci, D. and White, E. Wind Energy Technologies Office (WETO)
Jul 27, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Tower TTU (SWiFT) Tower, All levels Raw Data
**Overview**
This dataset includes a diurnal cycle with a consistent Convective-Neutral-Stable overnight transition after a frontal passage.
**Data Details**
These data have been provided by Texas Tech University from their 200-m meteorological tower.
**Data Quality**
See rep...
Ennis, B. Wind Energy Technologies Office (WETO)
Nov 07, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence G Raw Data
**Overview**
Sequence G: Upwind Teetered (F)
Test sequence G used an upwind, teetered turbine with a 0° cone angle. The wind speeds ranged
from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind speeds and angles of ±10°
were achieved at the high wind speeds. Th...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 3 Raw Data
**Overview**
Sequence 3: Tower Wake Measure (P)
Sequence 3 used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this
sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s]
Reynolds number regimes for the circular cr...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence B Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence C Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible