OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 26 - 50 of 52.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"25-29"×
Wind Energy×

Microbarograph ESRL Hi-Res Microbarograph, John Day Reviewed Data

**Overview** High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' ...
Wilczak, J. Wind Energy Technologies Office (WETO)
Feb 11, 2016
1 Resources
0 Stars
Publicly accessible

Microbarograph ESRL Hi-Res Microbarograph, Wasco Airport Reviewed Data

**Overview** High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' ...
Wilczak, J. Wind Energy Technologies Office (WETO)
Dec 12, 2015
1 Resources
0 Stars
Publicly accessible

NREL GIS Data: U.S. Atlantic Coast Offshore Windspeed 90m Height High Resolution

This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. The data provide an estimate of annual average wind speed at 90 meter height above surface for specific offshore regions of the United Stat...
Wood, J. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation

UAE6 Wind Tunnel Tests Data UAE6 Sequence G Raw Data

**Overview** Sequence G: Upwind Teetered (F) Test sequence G used an upwind, teetered turbine with a 0° cone angle. The wind speeds ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind speeds and angles of ±10° were achieved at the high wind speeds. Th...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence D Raw Data

**Overview** Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F), Downwind High Pitch (F) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence B Raw Data

**Overview** Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F), Downwind High Pitch (F) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence C Raw Data

**Overview** Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F), Downwind High Pitch (F) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 4 Raw Data

**Overview** Sequence 4: Static Pressure Calibration (P) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 30° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. B...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

Airfoil Computational Fluid Dynamics 2k shapes, 25 AoA's, 3 Re numbers

This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 1,830 airfoil shapes computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes w...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible

Flow Redirection and Induction in Steady State (FLORIS) Wind Plant Power Production Data Sets

This dataset contains turbine and plant-level power outputs for 252,500 cases of diverse wind plant layouts operating under a wide range of yawing and atmospheric conditions. The power outputs were computed using the Gaussian wake model in NREL's FLOw Redirection and Induction in ...
Ramos, D. et al National Renewable Energy Laboratory
Feb 12, 2021
5 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 5 Raw Data

**Overview** Sequence 5: Sweep Wind Speed (F,P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed was ramped from 5 m/s to 25 m/s by the wind tunnel operator. This was repeated with a decreasing ramp. The yaw angle was maintained at 0°. The ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data

**Overview** Sequence 7: Shroud Operating (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data

**Overview** Sequence V: Tip Plate (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 8 Raw Data

**Overview** Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked (P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence 9 Raw Data

**Overview** Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked (P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test

The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability. The GRC uses a combined gear...
Keller and RobbNational Renewable Energy Laboratory
May 02, 2016
17 Resources
0 Stars
Publicly accessible

Visual Impact Assessment of the Existing Land-based Wind Turbine Fleet of the Contiguous United States

This data submission contains GIS raster datasets mapping the visual impacts of the land-based wind turbine fleet in the Contiguous United States (CONUS). Two datasets are included, each presenting a different quantification of visual impacts: 1. Cumulative visual magnitude, meas...
Gleason, M. et al National Renewable Energy Lab
Mar 19, 2024
3 Resources
0 Stars
Publicly accessible

2014 Wind Turbine Gearbox Damage Distribution based on the NREL Gearbox Reliability Database

Despite the improvements in wind turbine gearbox design and manufacturing practices, the wind industry is still challenged by premature wind turbine gearbox failures. To help address this industry-wide challenge, a consortium called the Gearbox Reliability Collaborative (GRC) was ...
Sheng, S. National Renewable Energy Laboratory
Feb 09, 2015
1 Resources
0 Stars
In curation

An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030

Output data from an NREL report entitled "An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030" (NREL/TP-6A20-67675), which analyzes the spatial variation of levelized cost of energy (LCOE) and levelized avoided cost of energy (LACE) to ...
Beiter. . et al National Renewable Energy Laboratory
May 17, 2017
1 Resources
0 Stars
Publicly accessible
<< Previous123Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service