Search OEDI Data
Showing results 26 - 50 of 56.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Geomechanical Modeling for Thermal Spallation Drilling
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling,...
Walsh, S. et al Lawrence Livermore National Laboratory
Aug 24, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10
We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in...
Lawrence Livermore National Laboratory
Sep 27, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Bradys Hot Springs Ambient Noise Correlation Functions (Initial Waveforms)
These files are ambient noise correlation (ANC) functions calculated for 11 days of continuous seismic data recorded by the Lawrence Berkeley network in the Brady geothermal field. These are SAC formatted seismic waveforms. The stations included are BPB04, BPB05, BPB07, BPB08, BP...
Matzel, E. Lawrence Livermore National Laboratory
Jul 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption
We summarized the FY17 and part of FY18 results of the analysis of the effect of several parameters (e.g., total dissolved solids, specific competing metals, pH, and temperature) on REE recovery from geothermal brine in a manuscript that was submitted to Environmental Science & Te...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jan 01, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chemical Impact of Elevated CO2 on Geothermal Energy Production
Numerical simulations have shown that the use of supercritical CO2 instead of water as a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal energy production and...
Carroll, S. et al Lawrence Livermore National Laboratory
Jan 01, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Oct 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Newberry EGS Seismic Velocity Model
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW ...
Templeton, D. Lawrence Livermore National Laboratory
Oct 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Gas Propagated Borehole Fracture Model And Simulation
We developed a model for fracture production produced during detonation of an explosive mixture in a 10m packed off section of a shallow borehole. The model is based upon an actual field and lab experiments on low-damage borehole fracturing performed at Sandia National Labs by Mar...
Carrigan, C. Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
3D Seismic Reflection Attributes of a Geothermal Area
Images from a 3D seismic reflection survey across a geothermal area are shown. Images of coherency and acoustic impedance are shown. Well tracks and MEQ location are overlain.
J., R. Lawrence Livermore National Laboratory
Sep 15, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Nov 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations
This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key too...
Templeton, D. et al Lawrence Livermore National Laboratory
Apr 18, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 5-2428: Fracture Permeability Impact on Reservoir Stress and Seismic Slip Behavior Workshop Presentation
This is a presentation on the Fracture Permeability Impact on Seismic Slip Behavior project by Lawrence Livermore National Laboratory, presented by Dr. Kayla A. Kroll. The project's objective is to develop, apply and validate a holistic thermal, hydrologic, mechanical, and chemic...
Kroll, K. et al Lawrence Livermore National Laboratory
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Brady 1D Seismic Velocity Model Ambient Noise Prelim
Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 ...
J., R. Lawrence Livermore National Laboratory
Oct 25, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small nu...
Fu, P. and Carrigan, C. Lawrence Livermore National Laboratory
Jan 01, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Applications of Geothermally-Produced Colloidal Silica in Reservoir Management Smart Gels
In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances r...
Hunt, J. et al Lawrence Livermore National Laboratory
Jan 31, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Brady Geothermal 1D Seismic Velocity Model
This submission contains an ASCII text file of seismic velocities derived from ambient noise cross-correlation used to create a model of seismic velocity as a 1-D function of depth in addition to a quarterly report describing the creation and use of the model. Model uses 28 Green'...
Matzel, E. Lawrence Livermore National Laboratory
Feb 17, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Design of an Airlift Bioreactor
An important consideration for the process design is cell immobilization-enabled flow-through operation. Large-scale biosorption relies on cells that are immobilized on a supporting substrate and used to 'attract' metal ions. Cell immobilization allows easy separation of the feed...
Jiao, Y. et al Lawrence Livermore National Laboratory
Mar 13, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Thermal Drawdown Induced Flow Channeling in Fractured Geothermal Reservoirs: Rock Mechanics and Rock Engineering
We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal "hydrological" mechanical simulator is used to study the interactions between fluid flow, temperature change, and t...
Fu, P. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Grain-Scale Failure in Thermal Spallation Drilling
Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
REE Adsorption Performance with Immobilized Caulobacter Biofilms
This submission includes data collected from experiments on the performance of rare earth adsorption by immobilized bacteria that accompany the FY18 Q2 and Q3 quarter reports. Relevant information from these reports is included in a resource below. The spreadsheet below includes d...
Jiao, Y. and Park, D. Lawrence Livermore National Laboratory
Apr 01, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Using Fully Coupled Hydro-Geomechanical Numerical Test Bed to Study Reservoir Stimulation with Low Hydraulic Pressure
This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimu...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 31, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
The Value of Spatial Information for Determining Well Placement
The article and accompanying spreadsheet represent the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate t...
Trainor-Guitton, W. et al Lawrence Livermore National Laboratory
May 12, 2014
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Surface Complexation Modeling of Terbium Biosorption onto E. Coli Bacterial Surfaces with Lanthanide Binding Tags
Lanthanide binding tags (LBTs) have been engineered onto native Escherichia coli (E. coli) bacterial surfaces to enhance extraction and recovery of rare earth elements (REEs). Three strains of E. coli were studied: (1) the native E. coli surface, (2) a mutant E. coli surface with ...
Jiao, Y. Lawrence Livermore National Laboratory
Apr 01, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible