Search OEDI Data
Showing results 226 - 250 of 688.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
DEEPEN 3D PFA Index Models for Exploration Datasets at Newberry Volcano
DEEPEN stands for DE-risking Exploration of geothermal Plays in magmatic ENvironments.
As part of the development of the DEEPEN 3D play fairway analysis (PFA) methodology for magmatic plays (conventional hydrothermal, superhot EGS, and supercritical), index models needed to be de...
Taverna, N. et al National Renewable Energy Laboratory
Jun 30, 2023
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Development of 3-D Structural Surface Model for the Tuscarora Sandstone, Morgantown, WV
This dataset contains grid files for subsurface maps created in GES interpretation software and exported as Zmap formated grid files. Depth values in SSTVD (subsea true vertical depth).
The methods used for analysis and a detailed discussion of the results are presented in a paper...
McCleery, R. et al West Virginia University
Dec 19, 2019
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
LCOE and Baseline Data for ORPC's RivGen 1.F River Power System
Base data and documentation of LCOE calculations for ORPC's RivGen 1.F Power System, demonstrated in the Kvichak River at Igiugig, Alaska in 2015.
Salmon, A. Igiugig Village Council
Oct 31, 2016
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Rare Earth Element Geochemistry for Produced Waters, WY
These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.
*Note Link below contains updated version of spreadsheet (6/14/2017)
Quillinan, S. et al University of Wyoming
Jun 30, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Rare Earth Element Concentration of Wyoming Thermal Waters Update
Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.
Quillinan, S. et al University of Wyoming
Jun 01, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Demand-Side Grid Model (dsgrid) Data from the Electrification Futures Project (EFS)
This data set contains the full-resolution and state-level data described in the linked technical report (https://www.nrel.gov/docs/fy18osti/71492.pdf). It can be accessed with the NREL-dsgrid-legacy-efs-api, available on GitHub at https://github.com/dsgrid/dsgrid-legacy-efs-api a...
Hale, E. et al National Renewable Energy Laboratory
Jul 08, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
NREL GIS Data: Hawaii Low Resolution Concentrating Solar Power Resource
_Abstract:_ Monthly and annual average solar resource potential for Hawaii.
_Purpose:_ Provide information on the solar resource potential for Hawaii. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, o...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Drill Cutting and Core Major, Trace and Rare Earth Element Analyses from Wells RN-17B and RN-30, Reykjanes, Iceland
Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under...
Fowler, A. and Zierenberg, R. University of California
May 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Mineralogy of Drill Cuttings Beowawe, Dixie Valley and Roosevelt Hot Springs
Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from N...
Simmons, S. Energy and Geoscience Institute at the University of Utah
Jan 25, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Rare Earth Element Concentrations from Wells at the Don A. Campbell Geothermal Plant, Nevada
* Requires permission of originators for use.
Rare earth element concentrations in thermal springs from the wells at the Don A. Campbell geothermal plant, Nevada. Samples taken from geothermal wells 85-11, 65-11, 54-11, and 64-11. Includes pH and concentrations for Cerium, Dyspros...
Fowler, A. and Zierenberg, R. University of California
Dec 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible