Search OEDI Data
Showing results 151 - 175 of 360.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Texas Tech Building Wake Field Experiment, Reese Technology Center / Averaged Data
**Overview**
This dataset contains sonic anemometer measurements around a building the size of a typical suburb home located at Texas Tech's Reese Technology Center. These data are intended to validate computer models.
**Data Details**
Stations 1-22 are sonic anemometers at a h...
Nelson, M. and Pol, S. Wind Energy Technologies Office (WETO)
May 06, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Sodar PNNL Scintec MFAS, Oregon Raceway Park Raw Data
**Overview**
Provide measurements of wind speed and direction up to 400 m AGL (max). The data are stored in 2 forms: ASCII and raw (binary). ASCII files contain averaged data (currently 15 min time step and 10 m range gate); raw files could be reprocessed with the sodar software...
Pekour, M. and Berg, L. Wind Energy Technologies Office (WETO)
Oct 07, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 3 Raw Data
**Overview**
Sequence 3: Tower Wake Measure (P)
Sequence 3 used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this
sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s]
Reynolds number regimes for the circular cr...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Buoy California Wind Sentinel (130), Morro Bay Processed Data
**Overview**
The purpose of the dataset is to provide preliminary filtered, averaged buoy data and standardize the data format of various data streams from the buoy into NetCDF. The attached Lidar Buoy Data Dictionary provides further details on the various instruments mounted o...
Krishnamurthy, R. Wind Energy Technologies Office (WETO)
Jan 04, 1980
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence F Raw Data
**Overview**
Sequence F: Downwind High Cone (F)
This test sequence used a downwind, rigid turbine with an 18° cone angle. The wind speed
ranged from 10 m/s to 20 m/s. Excessive inertial loading due to the high cone angle prevented
operation at lower wind speeds. Yaw angles of Â...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 4 Raw Data
**Overview**
Sequence 4: Static Pressure Calibration (P)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 30° were achieved. The blade tip pitch was 3°.
The rotor rotated at 72 RPM. B...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
NWTC Lidar (3) Pre-campaign /RTD Data
**Overview**
This is a pre-campaign instrument deployment. With it, we aim to upload data and test and verify the ingest pipeline.
Debnath, M. Wind Energy Technologies Office (WETO)
Feb 07, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station Astoria, OR (AST) Reviewed Data
**Overview**
A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.
**Data Details**
Note,...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 27, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station Forks, WA (FKS) Reviewed Data
**Overview**
A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.
**Data Details**
Note,...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 27, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station North Bend, OR (OTH) Raw Data
**Overview**
A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.
**Data Details**
Note,...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 03, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station North Bend, OR (OTH) Reviewed Data
**Overview**
A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.
**Data Details**
Note,...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 27, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station Astoria, OR (AST) Raw Data
**Overview**
A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.
**Data Details**
Note,...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 03, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station Forks, WA (FKS) Raw Data
**Overview**
A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.
**Data Details**
Note,...
Gottas, D. Wind Energy Technologies Office (WETO)
Oct 03, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible