Search OEDI Data
Showing results 126 - 150 of 164.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Flow Redirection and Induction in Steady State (FLORIS) Wind Plant Power Production Data Sets
This dataset contains turbine and plant-level power outputs for 252,500 cases of diverse wind plant layouts operating under a wide range of yawing and atmospheric conditions. The power outputs were computed using the Gaussian wake model in NREL's FLOw Redirection and Induction in ...
Ramos, D. et al National Renewable Energy Laboratory
Feb 12, 2021
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Cold-front (D01)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 19, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Cold-front (D02)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 19, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Sea-breeze (D01)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Sea-breeze (D02)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence E Raw Data
**Overview**
Sequence E: Yaw Releases (P)
This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds
ranged from 7 m/s to 17 m/s. Initial yaw angles of ±90° were achieved. The blade tip pitch was
3°. The rotor rotated at 72 RPM. Blade and probe...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
2023 National Offshore Wind data set (NOW-23)
The 2023 National Offshore Wind data set (NOW-23) is the latest wind resource data set for offshore regions in the United States, which supersedes, for its offshore component, the Wind Integration National Dataset (WIND) Toolkit, which was published about a decade ago and is curre...
Bodini, N. et al National Renewable Energy Laboratory
Jan 01, 2020
21 Resources
1 Stars
Curated
21 Resources
1 Stars
Curated
2024 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2024 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 24, 2024
11 Resources
0 Stars
Curated
11 Resources
0 Stars
Curated
Transparent Cost Database: Generation, BioFuels, Vehicle Levelized Costs
For emerging energy technologies, a variety of cost and performance numbers are cited in presentations and reports for present-day characteristics and potential improvements. Amid a variety of sources and methods for these data, the Office of Energy Efficiency and Renewable Energy...
Staff, T. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
7 Resources
1 Stars
In curation
7 Resources
1 Stars
In curation
University of Miami Coupled Model (UMCM) for Hurricanes Ike and Sandy
The University of Miami Coupled Model (UMCM) is a coupled model that integrates atmospheric, wave, and ocean components to produce wind, wave, and current data. Atmospheric data is produced using the [Weather Research and Forecasting model](https://www.mmm.ucar.edu/weather-researc...
Phillipes, C. et al National Renewable Energy Laboratory
Sep 30, 2015
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible