Search OEDI Data
Showing results 1 - 25 of 32.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
ALFA Coupled Computational Fluid Dynamics/Discrete Element Method Modeling System
The HDIS/COUPi discrete element method modeling system was used to simulate the interaction between various debris and the Research Debris Diversion Platform (RDDP)
DUVOY, P. University of Alaska Fairbanks
Nov 29, 2016
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Performance estimation of resonance-enhanced dual-buoy wave energy converter using coupled time-domain simulation
This paper presents the modeling methodology and performance evaluation of the resonance-enhanced dual-buoy WEC (Wave Energy Converter) by HEM (hydrodynamic & electro-magnetic) fully-coupled-dynamics time-domain-simulation program. The numerical results are systematically compared...
Kang, H. et al Texas A&M University
Aug 31, 2020
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
ALFA Shared Autonomy Manipulation Data with a Seabotix vLBV300
This report outlines marine field demonstrations for manipulation tasks with a semi-Autonomous Underwater Vehicle (sAUV). The vehicle is built off a Seabotix vLBV300 platform with custom software interfacing it with the Robot Operating System (ROS). The vehicle utilizes an inertia...
Hollinger, G. and Lawrance, N. Oregon State University
Jun 19, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
AeroDyn V15.04: Design Tool for Wind and MHK Turbines
AeroDyn is a time-domain wind and MHK turbine aerodynamics module that can be coupled into the FAST version 8 multi-physics engineering tool to enable aero-elastic simulation of horizontal-axis wind turbines. AeroDyn V15.04 has been updated to include a cavitation check for MHK tu...
Murray, R. et al National Renewable Energy Laboratory
Apr 28, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Co-Design of Marine Energy Converters for Autonomous Underwater Vehicle Docking and Recharging Software and Data
Software and testing data from the OH Hinsdale Wave lab for DOE-funded project on Co-Design of Marine Energy Converters for Autonomous Underwater Vehicle Docking and Recharging. This project will perform foundational research and testing to accelerate the sector-wide development a...
Hollinger, G. et al Oregon State University
Oct 26, 2022
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Computational Fluid Dynamics Simulation of Oscylator cylinders
This is one of the computational fluid dynamics (CFD) simulations. The parameters for the test are in the info.txt file.
Taipale, J. Vortex Hydro Energy
Feb 07, 2017
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
RANS Simulation ADM of the NREL Phase VI wind turbine modeled as MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
In this case study the flow field around and in the wake of the NREL Phase VI wind turbine, modeled is MH...
Javaherchi, T. University of Washington
Jun 08, 2016
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
ALFA Station Keeping Results for Seabotix vLBV300 Underwater Vehicle near Newport, OR
This data set presents results testing the station keeping abilities of a tethered Seabotix vLBV300 underwater vehicle equipped with an inertial navigation system. These results are from an offshore deployment on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.1...
Hollinger, G. Oregon State University
Apr 20, 2016
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
RANS Simulation RRF of Single Full Scale DOE RM1 MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
In this case study taking advantage of the symmetry of the DOE RM1 geometry, only half of the geometry i...
Javaherchi, T. et al University of Washington
Apr 10, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
RANS Simulation RRF of Single Lab-Scaled DOE RM1 MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same p...
Javaherchi, T. et al University of Washington
Apr 15, 2014
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
RANS Simulation VBM of Single Full Scale DOE RM1 MHK Turbine
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
In this...
Javaherchi, T. and Aliseda, A. University of Washington
Apr 10, 2013
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
TEAMER: AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Sim Model
Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Tom, N. and Leon, J. AquaHarmonics, Inc.
Dec 31, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
M3 Wave DMP/APEX WEC Final Technical Report
This project successfully developed methods for numerical modeling of sediment transport phenomena around rigid objects resting on or near the ocean floor. These techniques were validated with physical testing using actual sediment in a large wave tank. These methods can be applie...
Morrow, M. et al M3 Wave
May 31, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
TEAMER AquaHarmonics High Fidelity WEC Sim PTO and Control Model Validation, Test Logs and Results
Collaborative effort between AquaHarmonics, Sandia National Laboratories (SNL), and the National Renewable Energy Laboratory (NREL) to revise and validate Aquaharmonics' full wave to wire model, allowing for reduced uncertainty and increased understanding of design requirements of...
Hagmuller, A. et al AquaHarmonics, Inc.
Dec 16, 2021
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
RANS Simulation VBM of Single Lab Scaled DOE RM1 MHK Turbine
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package.
The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same po...
Javaherchi, T. et al University of Washington (NNMREC)
Apr 15, 2014
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
TEAMER: OSU X Hinsdale & Sandia LUPA Uncertainty Testing
This processed data is from TEAMER testing through RFTS 7 at the O.H. Hinsdale Wave Research Laboratory in Corvallis, Oregon. This testing was conducted by Oregon State University (OSU) and Sandia National Laboratories in October and November 2023. The Laboratory Upgrade Point Abs...
Robertson, B. et al Oregon State University
Oct 19, 2023
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible