Search OEDI Data
Showing results 1 - 25 of 25.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Flow Redirection and Induction in Steady State (FLORIS) Wind Plant Power Production Data Sets
This dataset contains turbine and plant-level power outputs for 252,500 cases of diverse wind plant layouts operating under a wide range of yawing and atmospheric conditions. The power outputs were computed using the Gaussian wake model in NREL's FLOw Redirection and Induction in ...
Ramos, D. et al National Renewable Energy Laboratory
Feb 12, 2021
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Airfoil Computational Fluid Dynamics 9k shapes, 2 AoA's
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 8,996 airfoil shapes, computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes ...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Airfoil Computational Fluid Dynamics 2k shapes, 25 AoA's, 3 Re numbers
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 1,830 airfoil shapes computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes w...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Wind Turbine Gearbox Condition Monitoring Vibration Analysis Benchmarking Datasets
Wind turbine condition monitoring (CM) can potentially help the wind industry reduce turbine downtime and operation and maintenance (O&M) cost. NREL CM research has investigated various condition-monitoring techniques such as acoustic emission (AE specifically stress wave), vibrat...
Sheng, S. National Renewable Energy Laboratory
Mar 28, 2014
5 Resources
2 Stars
Publicly accessible
5 Resources
2 Stars
Publicly accessible
NWTC Ceilometer (1) Pre-campaign / Raw Data
**Overview**
This instrument will be testing the data transfer process pre-before deploying the campaign. The netCDF L1 data file contains level 1 (L1) data from the ceilometer.
**Data Quality**
Raw data from ceilometer
Hamilton, N. and Zalkind, D. Wind Energy Technologies Office (WETO)
Sep 20, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
NWTC Ceilometer (1) Pre-campaign / Reviewed Data
**Overview**
This instrument will be testing the data transfer process before deploying the campaign. The netCDF L2 data file from the ceilometer contains level 2 (L2) data that has gone through the precalculation service and averaging.
The profile is set to 4500 m (14 764 ft).
...
Hamilton, N. and Zalkind, D. Wind Energy Technologies Office (WETO)
Sep 20, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Sup3rWind Data (CONUS)
This data contains paired European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) and the Wind Integration National Dataset Toolkit (WTK) images for 2007 and 2010 over two regions in the US, with domain sizes ~800x800 (latitudes from 25.89 to 41.58, and long...
Sinha, S. et al National Renewable Energy Lab NREL
Jul 16, 2024
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence B Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence C Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence D Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
NWTC Ceilometer (1) Pre-campaign / Derived Data
**Overview**
This instrument will be testing the data transfer process before deploying the campaign.
The netCDF L3 data file has level 3 (L3) data that have gone through the calculation service and contains all the data from the algorithms, including mixing layer height values ...
Hamilton, N. and Zalkind, D. Wind Energy Technologies Office (WETO)
Sep 20, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Additional Data Focused on Phase 1 Geared Toward Computational Fluid Dynamics (CFD) validation
**Overview**
A new validation campaign was developed within the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) to better understand the complex interactions between components of a floating wind system (e.g., columns, pontoons, etc.) in ...
Robertson, A. Wind Energy Technologies Office (WETO)
Apr 08, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
OC6 Phase Ia Nonlinear hydrodynamic loading validation dataset
**Overview**
Two validation campaigns were examined within the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) Phase 1 project to examine the modeling tools' underprediction of loads and motion of a floating wind semisubmersible (semi) at...
Robertson, A. Wind Energy Technologies Office (WETO)
Aug 08, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible