Search OEDI Data
Showing results 1 - 25 of 107.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
2022 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2022 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Vimmerstedt, L. et al National Renewable Energy Laboratory (NREL)
Jun 01, 2022
14 Resources
0 Stars
Publicly accessible
14 Resources
0 Stars
Publicly accessible
2021 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
Starting in 2015 NREL has presented the Annual Technology Baseline (ATB) in an Excel workbook that contains detailed cost and performance data, both current and projected, for renewable and conventional technologies. The workbook includes a spreadsheet for each technology. This ve...
Vimmerstedt, L. et al National Renewable Energy Laboratory (NREL)
Jul 12, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
2023 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2023 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 09, 2023
13 Resources
0 Stars
Publicly accessible
13 Resources
0 Stars
Publicly accessible
2024 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2024 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 24, 2024
11 Resources
0 Stars
Curated
11 Resources
0 Stars
Curated
Building Component Library
The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components ...
Long, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
1 Resources
0 Stars
In curation
1 Resources
0 Stars
In curation
Flow Redirection and Induction in Steady State (FLORIS) Wind Plant Power Production Data Sets
This dataset contains turbine and plant-level power outputs for 252,500 cases of diverse wind plant layouts operating under a wide range of yawing and atmospheric conditions. The power outputs were computed using the Gaussian wake model in NREL's FLOw Redirection and Induction in ...
Ramos, D. et al National Renewable Energy Laboratory
Feb 12, 2021
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
G2Aero Database of Airfoils Curated Airfoils
This dataset contains a curated set of 19,164 airfoil shapes from various applications and the data-driven design space of separable shape tensors (PGA space), which can be used as a parameter space for machine-learning applications focused on airfoil shapes.
We constructed the a...
Doronina, O. et al National Renewable Energy Lab NREL
Sep 24, 2024
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
U.S. Wind and Solar PV Supply Curves with Future Land-use Change
This dataset provides future supply curves representing the total resource potential for land-based wind and solar photovoltaic (PV) deployment in the conterminous United States after accounting for the impact of land-use and land-cover change (LULC). We use LULC projections from ...
Sergi, B. et al National Renewable Energy Laboratory (NREL)
Jan 10, 2024
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Airfoil Computational Fluid Dynamics 9k shapes, 2 AoA's
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 8,996 airfoil shapes, computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes ...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Airfoil Computational Fluid Dynamics 2k shapes, 25 AoA's, 3 Re numbers
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 1,830 airfoil shapes computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes w...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence B Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence C Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence D Raw Data
**Overview**
Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F),
Downwind High Pitch (F)
This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed
ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Wind Turbine Oil and Gas Pipeline Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from oil and gas pipelines. A setback requirement is a minimum distance from a pipeline that an energy project may be developed. As of April 2022, no ordinances were discovered for any counties. Such ordinances are likely to...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
Wind Turbine Transmission Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from transmission based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from transmission infrastructure that an energy project may be developed, and these varied widely across the...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Wind Turbine Structure Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from structures based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a structure that an energy project may be developed, and these varied widely across the counties in which...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Wind Turbine Railroad Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from railroad based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a railroad that an energy project may be developed, and these varied widely across the counties in which th...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Wind Turbine Road Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from roads based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a road that an energy project may be developed, and these varied widely across the counties in which they exis...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Wind Turbine Water Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter
This dataset represents wind energy setback requirements from water based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from water that an energy project may be developed, and these varied widely across the counties in which they exist...
Geospatial Data Science, N. and Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
wfip2.model/retro.hrrr.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible