Search OEDI Data
Showing results 1 - 25 of 53.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Chemical Impact of Elevated CO2 on Geothermal Energy Production
Numerical simulations have shown that the use of supercritical CO2 instead of water as a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal energy production and...
Carroll, S. et al Lawrence Livermore National Laboratory
Jan 01, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process
The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into ...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jul 01, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process
The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into a...
Jiao, Y. et al Lawrence Livermore National Laboratory
Oct 09, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Rates
Spreadsheets provides measured chlorite rate data from 100 to 300 degrees C at elevated CO2. Spreadsheet includes derived rate equation.
Carroll, S. Lawrence Livermore National Laboratory
Jul 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Illite Dissolution Rates and Equation (100 to 280 deg C)
The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Usi...
Carroll, S. Lawrence Livermore National Laboratory
Oct 17, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Kinetics of Chlorite Dissolution at Elevated Temperatures and CO2 Conditions
Chlorite dissolution kinetics were measured under far from equilibrium conditions using a mixed-flow reactor over temperatures of 100-275 degrees C at pH values of 3.0-5.7 in a background solution matrix of 0.05 m NaCl. Over this temperature range, magnesium was released congruent...
Carroll, S. et al Lawrence Livermore National Laboratory
Jul 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
REE Adsorption Performance with Immobilized Caulobacter Biofilms
This submission includes data collected from experiments on the performance of rare earth adsorption by immobilized bacteria that accompany the FY18 Q2 and Q3 quarter reports. Relevant information from these reports is included in a resource below. The spreadsheet below includes d...
Jiao, Y. and Park, D. Lawrence Livermore National Laboratory
Apr 01, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10
We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in...
Lawrence Livermore National Laboratory
Sep 27, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption
We summarized the FY17 and part of FY18 results of the analysis of the effect of several parameters (e.g., total dissolved solids, specific competing metals, pH, and temperature) on REE recovery from geothermal brine in a manuscript that was submitted to Environmental Science & Te...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jan 01, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Kinetics at Variable pH and Temperatures up to 275C
FY13 annual report describing the calculations and results associated with the data and dissolution rate contained in "Chlorite Kinetic Dissolution Data and Rate" (linked below).
Carroll, S. and Smith, M. Lawrence Livermore National Laboratory
Oct 01, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli
This data describes rare earth element adsorption onto E. coli cells engineered to express a lanthanide binding tag (LBT). We used a Great Salt Lake synthetic solution as the background matrix with Tb added to 1-10,000 ppb, concentrations much lower than the competing ions presen...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jun 04, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Geomechanical Modeling for Thermal Spallation Drilling
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling,...
Walsh, S. et al Lawrence Livermore National Laboratory
Aug 24, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Circulation Testing Processed data
This submission includes processed and reduced data for circulation testing that was conducted at the 164' fracture on the 4850 ft level of the Sanford Underground Research Facility. The circulation tests were done to test the flow through the 164' fracture in the EGS Collab Exper...
Fu, P. et al Lawrence Livermore National Laboratory
Apr 01, 2021
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Thermal Drawdown Induced Flow Channeling in Fractured Geothermal Reservoirs: Rock Mechanics and Rock Engineering
We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal "hydrological" mechanical simulator is used to study the interactions between fluid flow, temperature change, and t...
Fu, P. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Chlorite, Biotite, Illite, Muscovite and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 deg C
Chemical reactions pose an important but poorly understood threat to EGS long-term success because of their impact on fracture permeability. This report summarizes the dissolution rate equations for layered silicates where data were lacking for geothermal systems. Here we report ...
Carroll, S. et al Lawrence Livermore National Laboratory
Feb 24, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the ...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2000
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Great Salt Lake Composition and Rare Earth Speciation Analysis
We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would ...
Jiao, Y. et al Lawrence Livermore National Laboratory
Apr 19, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report
The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal...
A., T. Lawrence Livermore National Laboratory
Jan 01, 2012
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Poroelastic References
This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porou...
Morency, C. Lawrence Livermore National Laboratory
Dec 12, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Walker Ranch 3D Seismic Images
Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthqua...
J., R. Lawrence Livermore National Laboratory
Mar 01, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Sustainable Self-Propping Shear Zones in EGS: Chlorite, Illite, and Biotite Rates and Report
Spreadsheet containing chlorite, illite, and biotite rate data and rate equations that can be used in reactive transport simulations. Submission includes a report on the development of the rate laws.
Carroll, S. and Smith, M. Lawrence Livermore National Laboratory
Nov 06, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible