Search OEDI Data
Showing results 76 - 100 of 541.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
United States Mid-Atlantic Regional High Resolution Wind Resource
Annual average wind resource potential of the mid-Atlantic United States at a 50 meter height.
States included are: Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia and the District of Columbia.
This data set has been validated by NREL a...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
3 Resources
0 Stars
In curation
3 Resources
0 Stars
In curation
United States Pacific Northwest Regional High Resolution Wind Resource
Annual average wind resource potential of the northwestern United States at a 50 meter height.
This data set has been validated by NREL and wind energy meteorological consultants. *Note*: This data is not suitable for micro-siting potential development projects. This shapefile ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
3 Resources
0 Stars
In curation
3 Resources
0 Stars
In curation
Sodar NREL Scintex SFAS Wind Profiler, Condon Raw Data
**Overview**
The dataset includes 15-minute average wind speed and direction records from 10 m to 250 m above ground level (AGL) in 5-m range gates. Data were collected by a Scintec SFAS wind profiler installed at the Condon State Airport in Oregon, about 1.8 km northeast of the ...
Scott, G. and Jager, D. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Sodar NREL Scintex SFAS Wind Profiler, Condon Reviewed Data
**Overview**
The dataset includes 15-minute average wind speed and direction records from 10 m to 250 m above ground level (AGL) in 5-m range gates. Data were collected by a Scintec SFAS wind profiler installed at the Condon State Airport in Oregon, about 1.8 km northeast of the ...
Scott, G. and Jager, D. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
WEC-Sim Wave Energy Converter Simulator
WEC-Sim (Wave Energy Converter SIMulator) is an open-source wave energy converter (WEC) simulation tool.
The code is developed in MATLAB/SIMULINK using the multi-body dynamics solver SimMechanics. WEC-Sim has the ability to model devices that are comprised of rigid bodies, powe...
Lawson, . et al National Renewable Energy Laboratory
Mar 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
G2Aero Database of Airfoils Curated Airfoils
This dataset contains a curated set of 19,164 airfoil shapes from various applications and the data-driven design space of separable shape tensors (PGA space), which can be used as a parameter space for machine-learning applications focused on airfoil shapes.
We constructed the a...
Doronina, O. et al National Renewable Energy Lab NREL
Sep 24, 2024
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Annual Average Modeled Wind Speed for Puerto Rico and the Virgin Islands at a 100 Meter Hub Height
This is supplemental data to the 50 m height data set that was validated by NREL and wind energy meteorological consultants in 2007. The data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m spatial re...
Heimiller, D. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Annual Average Modeled Wind Speed (m/s) for Puerto Rico and the Virgin Islands at a 70 Meter Hub Height.
This is supplemental data to the 50 m height data set that was validated by NREL and wind energy meteorological consultants in 2007. The data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m spatial re...
Heimiller, D. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Flow Redirection and Induction in Steady State (FLORIS) Wind Plant Power Production Data Sets
This dataset contains turbine and plant-level power outputs for 252,500 cases of diverse wind plant layouts operating under a wide range of yawing and atmospheric conditions. The power outputs were computed using the Gaussian wake model in NREL's FLOw Redirection and Induction in ...
Ramos, D. et al National Renewable Energy Laboratory
Feb 12, 2021
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
NREL GIS data: Bhutan Wind Power Density at 50m Above Ground Level
GIS data for Bhutan's Wind Power Density at 50m Above Ground Level. NREL developed estimates of Bhutans wind resources at a spatial resolution of 1 km^2 using NREL?s Wind Resource Assessment and Mapping System (WRAMS). Wind turbine output at a given site can be predicted using win...
Heimiller, D. et al National Renewable Energy Laboratory
Nov 25, 2014
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Global CFDDA-based Onshore and Offshore Wind Potential Supply Curves by Country, Class, and Depth
This dataset contains global onshore and offshore wind supply curves based on a resource assessment performed at the National Renewable Energy Laboratory (NREL) based on the National Center for Atmospheric Research's (NCAR) Climate Four Dimensional Data Assimilation (CFDDA) mesosc...
Sullivan, P. et al National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
1 Stars
Publicly accessible
2 Resources
1 Stars
Publicly accessible
Quantifying and Monetizing Renewable Energy Resiliency
As part of the seed LDRD in 2017 we generated catastrophe models to look at the value of resiliency from an insurance perspective. These data sets reflect the inputs and outputs of that analysis.
Lisell, . et al National Renewable Energy Laboratory
Mar 13, 2018
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.hrrr.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/retro.rap.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Next Generation Weather Radar (NEXRAD) Radar Line-of-Sight
The Next Generation Weather Radar (NEXRAD) system is a network of doppler radar operated jointly by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force. This dataset represents a line-of-sight for each radar station. Radar line-of-...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
U.S. Wind Siting Regulation and Zoning Ordinances
A machine readable collection of documented wind siting ordinances at the state and local (e.g., county, township) level throughout the United States. The data were compiled from several sources including, DOE's Wind Exchange Ordinance Database (Linked in the submission), National...
Lopez, A. et al National Renewable Energy Laboratory
Jun 30, 2022
5 Resources
1 Stars
Publicly accessible
5 Resources
1 Stars
Publicly accessible
NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)
The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power...
Jager and AndreasNational Renewable Energy Laboratory
Dec 17, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible