Search OEDI Data
Showing results 76 - 100 of 196.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
NWTC LIDAR pre-campaign / Raw Data
**Overview**
This is a pre-campaign instrument deployment. With it we aim to upload data and test/verify the ingest pipeline.
Burk, K. Wind Energy Technologies Office (WETO)
Sep 29, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
PNNL Laser Disdrometer #1 pre-campaign / Raw Data
**Overview**
The Parsivel2 Laser Disdrometers provide accurate measurements of precipitation, hail and snow. They also provide droplet size distributions.
Krishnamurthy, R. Wind Energy Technologies Office (WETO)
Dec 21, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
NWTC WindCube Nacelle Lidar pre-campaign / Raw Data
**Overview**
Test data from the National Wind Technology Center (NWTC) for the WindCube Nacelle Lidar. Includes both real-time and 10-min average data.
Scholbrock, A. and Zalkind, D. Wind Energy Technologies Office (WETO)
Feb 01, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
PNNL Parsivel2 Laser Disdrometer #2 pre-campaign / Raw Data
**Overview**
The Parsivel2 Laser Disdrometers provide accurate measurements of precipitation, hail and snow. They also provide droplet size distributions.
Krishnamurthy, R. Wind Energy Technologies Office (WETO)
Dec 26, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
PNNL MET #1 pre-campaign / Raw Data
**Overview**
This dataset tests the data transfer and processing for a surface flux station, which includes low-speed weather information and high-speed sonic anemometer data.
Goldberger, L. Wind Energy Technologies Office (WETO)
Sep 22, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 2: Earth Model Datasets
The EGS Collab Project performed a series of tests to increase the understanding the response of crystalline rock mass to stimulations and fluid circulation to efficiently implement enhanced geothermal systems (EGS) technologies. The EGS Collab team created two underground testbed...
Neupane, G. et al Idaho National Laboratory
May 29, 2022
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data
**Overview**
Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind
High Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence M Raw Data
**Overview**
Sequence M: Transition Fixed (P)
Test sequence M used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from
5 m/s to 15 m/s. Yaw angles ranged from 0° to 90°. The blade tip pitch was 3°. The rotor rotated
at 72 RPM. Blade pressure measurement...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data
**Overview**
Sequence V: Tip Plate (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data
**Overview**
Sequence W: Extended Blade (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
NWTC Ceilometer (1) Pre-campaign / Raw Data
**Overview**
This instrument will be testing the data transfer process pre-before deploying the campaign. The netCDF L1 data file contains level 1 (L1) data from the ceilometer.
**Data Quality**
Raw data from ceilometer
Hamilton, N. and Zalkind, D. Wind Energy Technologies Office (WETO)
Sep 20, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Development of an Improved Cement for Geothermal Wells 2011 Progress Reports
This submission includes the University of Alaska Fairbanks Monthly Research Performance Progress Reports. The goal of this project is to develop an improved cement for geothermal wells.
Khataniar, S. Trabits Group, LLC
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Development of an Improved Cement for Geothermal Wells 2012 Progress Reports
This submission includes the University of Alaska Fairbanks Monthly Research Performance Progress Reports. The goal of this project is to develop an improved cement for geothermal wells.
Khataniar, S. Trabits Group, LLC
Jan 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
PNNL LIDAR Halo Streamline XR+ (1) pre-campaign / Raw Data
**Overview**
This is a pre-campaign instrument deployment. With it, we aim to upload data and test/verify the ingest pipeline.
**Data Quality**
Adding signal-to-noise ratio can exclude data based on this value.
Newsom, R. Wind Energy Technologies Office (WETO)
Feb 23, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
LLNL LIDAR Halo Streamline XR+ pre-campaign / Proc Data
**Overview**
This is a pre-campaign instrument deployment. With it, we aim to upload data and test/verify the ingest pipeline.
**Data Quality**
Adding signal-to-noise ratio can exclude data based on this value.
Newsom, R. Wind Energy Technologies Office (WETO)
Jan 02, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence N Raw Data
**Overview**
Sequence N: Sin AOA, Rotating (P)
This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the
presence of rotational influences by varying blade pitch angle. Test sequence N used an upwind,
rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence P Raw Data
**Overview**
Sequence P: Wake Flow Visualization, Upwind (P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 15 m/s. Yaw angles of 0° to –60° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence Q Raw Data
**Overview**
Sequence Q: Dynamic Inflow (P)
This sequence was designed to characterize the dynamic inflow variation using the five-hole
probes that extend upwind of the leading edge of the blade. This test sequence used an upwind,
rigid turbine with a 0° cone angle. The wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data
**Overview**
Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F);
Upwind 4° Pitch (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lift Equivalence and Cancellation for Airfoil Surge-Pitch-Plunge Oscillations
A NACA 0018 airfoil in freestream velocity is oscillated in longitudinal, transverse, and angle-of-attack directions with respect to the freestream velocity, known as surge, plunge, and pitch. The lift-based equivalence method introduces phase shifts between these three motions to...
Elfering, K. and Granlund, K. North Carolina State University
Jan 01, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Hybrid machine learning model to predict 3D in-situ permeability evolution
Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
Nov 22, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible