Search OEDI Data
Showing results 1 - 25 of 42.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
National Residential Efficiency Measures Database (REMDB)
This project provides a national unified database of residential building retrofit measures and associated retail prices and end-user might experience. These data are accessible to software programs that evaluate most cost-effective retrofit measures to improve the energy efficien...
Moore, N. et al National Renewable Energy Lab NREL
Sep 29, 2023
5 Resources
0 Stars
In progress
5 Resources
0 Stars
In progress
Open-source technology database on Energy Storage
This database provides energy storage technologies, products, demonstration projects and analyses. Also, an Energy Map is created listing other sources of data, and an overview of the future potential estimations is provided. The data is machine-readable and open-source, working f...
Dorp, B. and Storage, E. National Renewable Energy Laboratory
Oct 10, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
U.S. Wind Siting Regulation and Zoning Ordinances
A machine readable collection of documented wind siting ordinances at the state and local (e.g., county, township) level throughout the United States. The data were compiled from several sources including, DOE's Wind Exchange Ordinance Database (Linked in the submission), National...
Lopez, A. et al National Renewable Energy Laboratory
Jun 30, 2022
5 Resources
1 Stars
Publicly accessible
5 Resources
1 Stars
Publicly accessible
Open Water Rate Specification
This repository documents the Open Water Rate Specification (OWRS), a machine-readable format for specifying and sharing water rate information. OWRS is designed for analysts, economists, and software developers interested in analyzing water rates. OWRS attempts to fully encode a ...
Staff, C. National Renewable Energy Laboratory
Feb 29, 2016
5 Resources
0 Stars
In curation
5 Resources
0 Stars
In curation
GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico
Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Utility Rate Database (URDB)
The Utility Rate Database (URDB) provides rate structure information for over 3,700 U.S. utilities. Rates are checked and updated annually by the National Renewable Energy Laboratory (NREL). Each record indicates the date of the last update.
The URDB allows you to search for your...
Zimny-Schmitt, D. and Huggins, J. National Renewable Energy Laboratory (NREL)
Jun 01, 2010
1 Resources
0 Stars
In curation
1 Resources
0 Stars
In curation
USGS Geophysics, Heat Flow, and Slip and Dilation Tendency Data used in Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This package contains USGS data contributions to the DOE-funded Nevada Geothermal Machine Learning Project, with the objective of developing a machine learning approach to identifying new geothermal systems in the Great Basin. This package contains three major data products (geoph...
DeAngelo, J. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Dataset for Evaluation of Extreme Weather Impacts on Utility-Scale Photovoltaic Plant Performance in the United States
This dataset is a fusion of three data types (operations and maintenance tickets, weather data, and production data) that was used to support machine learning analysis and evaluation of drivers for low performance at photovoltaic (PV) sites during compound, extreme weather events....
Gunda, T. and Jackson, N. Sandia National Laboratories
Apr 01, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Publications and Datasets from Play-Fairway Retrospective Analysis with Emphasis on Developing Improved Hydrothermal Energy Assessments
Previous moderate and high-temperature geothermal resource assessments of the western United States utilized data-driven methods and expert decisions to estimate resource favorability. Although expert decisions can add confidence to the modeling process by ensuring reasonable mode...
Mordensky, S. et al United States Geological Survey
Feb 07, 2023
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32
This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files
This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Microbial Taxa Distribution Data From 16S rRNA Analysis Of Desalination Operations At Carlsbad, CA And Tampa Bay, FL
This data set list the distribution of microbial taxa from three sets of sampling campaigns from unit operations in two large desalination facilities in the US conducted between March and May 2021. The desalination plants include the Claude "Bud" Lewis Carlsbad Desalination Plant ...
Kumar, M. et al University of Texas
Sep 24, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Active Source Seismic (Ultrasonic) Data from Double-Direct Shear Lab Experiments
Active source ultrasonic data from lab experiments p5270 and p5271 including raw waveforms (WF) and mechanical data (mat). From the PSU team working on the "Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties" project. The fric...
Marone, C. Pennsylvania State University
May 05, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report
This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Hybrid machine learning model to predict 3D in-situ permeability evolution
Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
Nov 22, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Altona Field Lab Inverse Model WRR 2020
Includes data for measured inert tracer breakthrough curves first reported in Hawkins (2020) (Water Resources Research). In addition, this submission includes the production well temperature measurements first reported in Hawkins et al. (2017a) (Water Resources Research, volume 53...
Tester, J. Cornell University
Jan 01, 2015
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC)
The Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC) data is a collection of 4km hourly wind, solar, temperature, humidity, and pressure fields for the contiguous United States under various climate change scenarios.
Sup3rCC is downscaled ...
Buster, G. et al The National Renewable Energy Lab (NREL)
Apr 19, 2023
7 Resources
2 Stars
Publicly accessible
7 Resources
2 Stars
Publicly accessible
Utah FORGE: Phase 1a Tensor Strainmeter Data for the April, 2022 Stimulation of Well 16A(78)-32
Data from two Tensor Optical Fiber Strainmeters that were operational during Stages 1, 2, and 3 of the April, 2022 stimulation of well 16A(78)-32. Each csv file contains data from each stimulation stage (stage1, stage2, stage3) for both Phase 1a strainmeter installations (FS01, f...
DeWolf, S. and Murdoch, L. Clemson University
Sep 15, 2022
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
Imperial Valley Dark Fiber Project Continuous DAS Data
The Imperial Valley Dark Fiber Project acquired Distributed Acoustic Sensing (DAS) seismic data on a ~28 km segment of dark fiber between the cities of Calipatria and Imperial in the Imperial Valley, Southern California. Dark fiber refers to unused optical fiber cables in telecomm...
Ajo-Franklin, J. et al Lawrence Berkeley National Laboratory
Nov 10, 2020
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Brady Geodatabase for Geothermal Exploration Artificial Intelligence
These files contain the geodatabases related to Brady's Geothermal Field. It includes all input and output files for the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (post-proces...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Desert Peak Geodatabase for Geothermal Exploration Artificial Intelligence
These files contain the geodatabases related to the Desert Peak Geothermal Field. It includes all input and output files used in the project. The files include data categories of raw data, pre-processed data, and analysis (post-processed data). In each of these categories there ar...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
BUTTER Empirical Deep Learning Dataset
The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four le...
Tripp, C. et al National Renewable Energy Laboratory
May 20, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible