Search OEDI Data
Showing results 1 - 25 of 39.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
PoroTomo Natural Laboratory Horizontal and Vertical Distributed Acoustic Sensing Data
This dataset includes links to the PoroTomo DAS data in both SEG-Y and hdf5 (via h5py and HSDS with h5pyd) formats with tutorial notebooks for use. Data are hosted on Amazon Web Services (AWS) Simple Storage Service (S3) through the Open Energy Data Initiative (OEDI). Also include...
Feigl, K. et al University of Wisconsin
Mar 29, 2016
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
EGS Collab: 3D Geophysical Model Around the Sanford Underground Research Facility
This package contains data associated with a proceedings paper (linked below) submitted to the 44th Workshop on Geothermal Reservoir Engineering. The Geophysical Model text file contains density, P and S-wave seismic speeds on a 3D grid. The file has six columns and provides latit...
Chai, C. et al Lawrence Berkeley National Laboratory
Feb 06, 2019
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Admiralty Inlet Hub-Height Turbulence Measurements from June 2012
This data is from measurements at Admiralty Head, in Admiralty Inlet. The measurements were made using an IMU equipped ADV mounted on a mooring, the 'Tidal Turbulence Mooring' or 'TTM'. The inertial measurements from the IMU allows for removal of mooring motion in post processing....
Kilcher, L. National Renewable Energy Laboratory
Jun 18, 2012
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Economic Analysis using GEOPHIRES for West Virginia University
This dataset contains all the inputs used and output produced from the modified GEOPHIRES for the economic analysis of base case hybrid GDHC system, improved hybrid GDHC system with heat pump and for hot water GDHC.
Software required: Microsoft Notepad, Microsoft Excel and GEOPHI...
Garapati, N. West Virginia University
Jan 09, 2020
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files
This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Matlab Scripts and Sample Data Associated with Water Resources Research Article
Scripts and data acquired at the Mirror Lake Research Site, cited by the article submitted to Water Resources Research:
Distributed Acoustic Sensing (DAS) as a Distributed Hydraulic Sensor in Fractured Bedrock
M. W. Becker(1), T. I. Coleman(2), and C. C. Ciervo(1)
1 California St...
Becker, M. and Coleman, T. California State University
Jul 18, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog from Double-Difference Seismic Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog obtained for a double-difference seismic tomography study.
The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-wave velocity (km/s), P-wave velocity quality indicator (1 for we...
Chai, C. et al Oak Ridge National Laboratory
Jun 01, 2020
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests: Hydraulic Data
Hydraulic responses from periodic hydraulic tests conducted at the Mirror Lake Fractured Rock Research Site, during the summer of 2015. These hydraulic responses were measured also using distributed acoustic sensing (DAS) which is cataloged in a different submission under this gr...
Cole, M. California State University
Jul 31, 2015
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Imperial Valley Dark Fiber Project Continuous DAS Data
The Imperial Valley Dark Fiber Project acquired Distributed Acoustic Sensing (DAS) seismic data on a ~28 km segment of dark fiber between the cities of Calipatria and Imperial in the Imperial Valley, Southern California. Dark fiber refers to unused optical fiber cables in telecomm...
Ajo-Franklin, J. et al Lawrence Berkeley National Laboratory
Nov 10, 2020
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Admiralty Inlet Advanced Turbulence Measurements: May 2015
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). Thes...
Kilcher, L. National Renewable Energy Laboratory
May 18, 2015
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Admiralty Inlet Advanced Turbulence Measurements: June 2014
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid...
Kilcher, L. National Renewable Energy Laboratory
Jun 30, 2014
26 Resources
0 Stars
Publicly accessible
26 Resources
0 Stars
Publicly accessible
Coupling Subsurface and Above-Surface Models for Optimizing the Design of Borefields and District Heating and Cooling Systems
Accurate dynamic energy simulation is important for the design and sizing of district heating and cooling systems with geothermal heat exchange for seasonal energy storage. Current modeling approaches in building and district energy simulation tools typically consider heat conduct...
Hu, J. et al Lawrence Berkeley National Laboratory
Jan 31, 2022
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Linearized Distribution Optimal Power Flow for OEDI SI
This research is to meant to demonstrate the OEDI SI use case for distributed optimal power flow (DOPF). The goal was to formulate the optimal power flow problem in the distribution system for active and reactive power setpoints of PV systems using topology information and voltage...
Sadnan, R. et al Pacific Northwest National Laboratory
Oct 03, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Microseismic Monitoring
The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first expe...
Schoenball, M. et al Lawrence Berkeley National Laboratory
Jul 29, 2019
45 Resources
0 Stars
Publicly accessible
45 Resources
0 Stars
Publicly accessible
GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico
Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
The Foundational Industry Energy Dataset: Unit-level Characterization and Derived Energy Estimates for Industrial Facilities in 2017
The Foundational Industry Energy Dataset (FIED) addresses several of the areas of growing disconnect between the demands of industrial energy analysis and the state of industrial energy data by providing unit-level characterization by facility. Each facility is identified by a uni...
McMillan, C. et al National Renewable Energy Laboratory (NREL)
Jul 01, 2024
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
2023 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2023 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 09, 2023
13 Resources
0 Stars
Publicly accessible
13 Resources
0 Stars
Publicly accessible
2024 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
These data provide the 2024 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products ...
Mirletz, B. et al National Renewable Energy Laboratory (NREL)
Jun 24, 2024
11 Resources
0 Stars
Curated
11 Resources
0 Stars
Curated
Programs and Code for Geothermal Exploration Artificial Intelligence
The scripts below are used to run the Geothermal Exploration Artificial Intelligence developed within the "Detection of Potential Geothermal Exploration Sites from Hyperspectral Images via Deep Learning" project. It includes all scripts for pre-processing and processing, including...
Moraga, J. Colorado School of Mines
Apr 27, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
United States Offshore Wind Supply Curves 2024
This data packet contains supply curves, hourly generation profiles, and composite siting exclusion TIFFs for offshore wind (OSW) in the waters of the EEZ off the contiguous United States. The supply curves offer comprehensive metrics such as capacity (MW), generation (MWh), level...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
15 Resources
0 Stars
Curated
15 Resources
0 Stars
Curated