Search OEDI Data
Showing results 1 - 12 of 12.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
SMART-DS Synthetic Electrical Network Data OpenDSS Models for SFO, GSO, and AUS
The SMART-DS datasets (Synthetic Models for Advanced, Realistic Testing: Distribution systems and Scenarios) are realistic large-scale U.S. electrical distribution models for testing advanced grid algorithms and technology analysis. This document provides a user guide for the data...
Palmintier, B. et al National Renewable Energy Laboratory (NREL)
Dec 18, 2020
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
REopt Lite Geothermal Heat Pump Design Requirements
This document describes the design requirements for the geothermal heat pump (GHP) module being added to the existing REopt Lite web tool. This document describes the purpose, users, and functional requirements to which the modified web tool shall conform. This document will be re...
Olis, D. National Renewable Energy Laboratory
Mar 08, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
BUTTER Empirical Deep Learning Dataset
The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four le...
Tripp, C. et al National Renewable Energy Laboratory
May 20, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files
This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset
The BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset adds node-level energy consumption data from watt-meters to the primary sweep of the BUTTER Empirical Deep Learning Dataset. This dataset contains energy consumption and performance data from 63,52...
Tripp, C. et al National Renewable Energy Laboratory
Dec 30, 2022
9 Resources
1 Stars
Curated
9 Resources
1 Stars
Curated
INTEGRATE Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements
The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements) project is developing a new inverse-design capability for the aerodynamic design of wind turbine rotors using invertible neural networks. This AI-based design techno...
Vijayakumar, G. et al National Renewable Energy Laboratory (NREL)
May 04, 2021
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
ARPA-E Grid Optimization (GO) Competition Challenge 3
Synthetic Input Data and Team Results for the GO Competition Challenge 3 for Events 1 4 and the Sandbox, along with problem and format descriptions and code to validate data and solutions, are available here. Data for industry scenarios will not be made public.
The Grid Optimizat...
Elbert, S. et al Pacific Northwest National Laboratory
May 02, 2024
39 Resources
1 Stars
Curated
39 Resources
1 Stars
Curated
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC)
The Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC) data is a collection of 4km hourly wind, solar, temperature, humidity, and pressure fields for the contiguous United States under various climate change scenarios.
Sup3rCC is downscaled ...
Buster, G. et al The National Renewable Energy Lab (NREL)
Apr 19, 2023
7 Resources
1 Stars
Curated
7 Resources
1 Stars
Curated
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible