Search OEDI Data
Showing results 1 - 12 of 12.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
3D Model of the McGinness Hills Geothermal Area
The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad ...
E. Faulds, J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings
Structural controls of 426 geothermal systems in the Great Basin region including western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east-central Nevada, eastern California, southern Oregon, and western Utah were analyzed with literature research, air photos...
Faulds, J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
3D Model of the San Emidio Geothermal Area
The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 ...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Structural Controls of the Neal Hot Springs Geothermal System, Eastern Oregon
Detailed geologic mapping (1:24,000 scale), structural and geochemical analyses, and integration of available geophysical and well-field data were utilized to assess the structural controls of the Neal Hot Springs geothermal field in eastern Oregon. The geothermal field lies withi...
Edwards, J. and Faulds, J. University of Nevada
May 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada MS Thesis
Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range pr...
Dering, G. and Faulds, J. University of Nevada
May 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
3D Model of the Tuscarora Geothermal Area
The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferre...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Gravity Survey of the Carson Sink Data and Maps
A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwat...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
3D Model of the Neal Hot Springs Geothermal Area
The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of the Patua Geothermal Area
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip or to dilate provides an indication of which faults or fault segments within a geothermal system are critically st...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of McGinness Hills Geothermal Area
Slip and Dilation Tendency in focus areas
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of Neal Hot Springs Geothermal Area
Slip and Dilation Tendency in focus areas
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible