Search OEDI Data
Showing results 1 - 25 of 190.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Evaluation of a Wave Powered Water Pump Performance by Ocean Field Testing and WEC-Sim Modeling
This submission from AMEC (the Atlantic Marine Energy Center) includes data from an ocean field deployment of a wave powered water pump in March 2023. The wave pump is an upweller device, designed to enhance macroalgal aquaculture.
The wave pump device was deployed off the coast ...
Kimball, C. et al University of New Hampshire, Atlantic Marine Energy Center (AMEC)
Mar 21, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
HERO WEC Bills of Materials: WEC, RO System, and Submersible Pump
This submission includes detailed Bills of Materials for the NREL-designed and built Hydraulic and Electric Reverse Osmosis Wave Energy Converter (HERO WEC), as well as the reverse osmosis assembly and submersible pump that are used in the HERO WEC.
The WEC file is specific to th...
Jenne, S. and Panzarella, J. National Renewable Energy Laboratory
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
HERO WEC V1 Upgrades SolidWorks Models (WEC, RO System, and Submersible Pump Housing)
The attached zip files include SolidWorks pack-and-go assemblies of NREL's HERO WEC (hydraulic and electric reverse osmosis wave energy converter), the reverse osmosis (RO) assembly, and the submersible pump assembly that is used to provide flow to the RO assembly in the electric ...
Jenne, S. and Panzarella, J. National Renewable Energy Laboratory
Jan 08, 2024
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
TEAMER: Numerical Modeling and Optimization of the iProTech Pitching Inertial Pump (PIP) Wave Energy Converter (WEC)
This project focused on developing an automated workflow to evaluate and optimize the iProTech Pitching Inertial Pump (PIP) wave energy converter (WEC) using open-source Python packages and the MATLAB/Simulink tool, WEC-Sim. The process involved parameterizing key design variables...
Wynn, N. et al National Renewable Energy Laboratory
Apr 11, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
HERO WEC V1.0 2024 WEC-Sim Detailed Simulation Runs and Summary Data
This dataset includes results from simulations of NREL's hydraulic and electric reverse osmosis wave energy converter (HEREO WEC). Simulation runs include 135 wave cases that were based on the updated WEC-Sim model, which is linked below. The data represented in this repository i...
Panzarella, J. et al National Renewable Energy Laboratory
Jul 01, 2024
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
HERO WEC V1 Upgrade 2023 Laboratory Testing (Raw Data)
This submission contains the original, unprocessed data from the 2023 Large Amplitude Motion Platform (LAMP) testing of NREL's Hydraulic and Electric Reverse Osmosis Wave Energy Converter (HERO WEC). This data serves as a companion to MHKDR #520.
Data was collected using NREL's Mo...
Jenne, S. et al National Renewable Energy Laboratory
Jan 01, 2024
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Small Scale WEC Performance Modeling Data
Small Scale WEC Performance Modeling Data is performance data from downscaled models of common WEC devices and their calculated performance outputs. This data is used by the Small WEC interactive modeling tool hosted by PRIMRE. The devices include a point absorber, a two-body poin...
King, T. et al National Renewable Energy Laboratory
Nov 08, 2021
68 Resources
0 Stars
Publicly accessible
68 Resources
0 Stars
Publicly accessible
Global Energy & Mining Data, World Bank (1970 2007)
Alternative and Nuclear Energy: Percentage of Total Energy Use Combustible Renewables and Waste: Metric Tons of Oil Equivalent Combustible Renewable and Waste: Percentage of Total Energy Electric Power Consumption Electric Power Transmission and Distribution Losses Electric Power ...
Brodt-Giles, D. and Bank, W. National Renewable Energy Laboratory
Oct 12, 2013
4 Resources
0 Stars
In curation
4 Resources
0 Stars
In curation
HERO WEC V1.0 WEC-Sim Detailed Simulation Runs and Summary Data
Data sets from simulation runs include 144 wave cases that were run based on the WEC-Sim model (https://mhkdr.openei.org/submissions/483). The 144 wave cases represent waves with the following wave height and wave period ranges:
Significant Wave Height: 0.25 4.0m in 0.25m incre...
Jenne, S. National Renewable Energy Laboratory
Aug 12, 2022
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
HERO WEC V1 Upgrade 2023 Laboratory Testing (processed data)
The following submission includes processed laboratory data from NREL's Hydraulic and Electric Reverse Osmosis Wave Energy Converter (HERO WEC), in the form of MATLAB workspaces. This dataset was created using NREL's Large Amplitude Motion Platform (LAMP) and collected between Aug...
Panzarella, J. et al National Renewable Energy Laboratory
Jan 01, 2024
12 Resources
0 Stars
Publicly accessible
12 Resources
0 Stars
Publicly accessible
WEC-Sim Wave Energy Converter Simulator
WEC-Sim (Wave Energy Converter SIMulator) is an open-source wave energy converter (WEC) simulation tool.
The code is developed in MATLAB/SIMULINK using the multi-body dynamics solver SimMechanics. WEC-Sim has the ability to model devices that are comprised of rigid bodies, powe...
Lawson, . et al National Renewable Energy Laboratory
Mar 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Reference Model 6 Full Scale Geometry (RM6: Oscillating Water Column)
Contains the Reference Model 6 (RM6) full scale geometry files of the Oscillating Water Column, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. This data was g...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
TEAMER: Numerical Model of IProTech PIP WEC Device
iProTech PIP wave energy converter (WEC) is a slack moored, single hull device with no moving parts in the water, joints or bearings. This submission includes data of the simulation, reports, and code for the iProTech PIP (WEC) project. The organization of the data included in the...
Ogden, D. et al IProTech
Nov 02, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Reference Model 6 Cost Breakdown (RM6: Oscillating Water Column)
Contains the Reference Model 6 (RM6) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM6 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
WEC-Sim Wave Energy Converter Simulator
WEC-Sim (Wave Energy Converter SIMulator) is an open-source wave energy converter (WEC) simulation tool.
The code is developed in MATLAB/SIMULINK using the multi-body dynamics solver SimMechanics. WEC-Sim has the ability to model devices that are comprised of rigid bodies, pow...
Lawson, M. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Reference Model 5 Cost Breakdown (RM5: Oscillating Surge Flap)
Contains the Reference Model 5 (RM5) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM5 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Mi...
Neary, V. et al Sandia National Laboratories
Sep 30, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible