Search OEDI Data
Showing results 1 - 25 of 188.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Pacific Marine Energy Center benthic physical conditions, macrofauna, and groundfish abundances
From 2010 to 2015, box core grabs were collected at permanent stations around the Pacific Marine Energy Center North Energy Test Site (PMEC-NETS) off Newport, Oregon. At each box core station a conductivity, temperature, depth (CTD) cast was conducted. These data include the CTD f...
Henkel, S. Oregon State University
Aug 26, 2015
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Cold Water Depth (Annual Average)
This shapefile represents annual average cold water depth recordings.
The cold water is defined by locating the depth that leads to the greatest average annual net power at each location when depth and its corresponding ?T are input into the power equation. This optimization ba...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Cold Water Depth (Summer Average)
This shapefile represents seasonal summer average cold water depth recordings.
The cold water is defined by locating the depth that leads to the greatest average annual net power at each location when depth and its corresponding ΔT are input into the power equation. This optim...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Cold Water Depth (Winter Average)
This shapefile represents seasonal winter average cold water depth recordings.
The cold water is defined by locating the depth that leads to the greatest average annual net power at each location when depth and its corresponding ΔT are input into the power equation. This optim...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Observation-Based Resource Assessment of Gulf Stream MHK
Multi-year measurements of current velocity, salinity, and temperature from fixed and vessel-mounted sensors quantify Gulf Stream (GS) MHK resource variability and inform development off Cape Hatteras, NC. Vessel transects across the GS demonstrate a jet-like velocity structure wi...
Muglia, M. et al North Carolina State University
Jan 01, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
ALFA: SWIFT Buoy Data Under Extreme Wave Conditions at the Newport South Energy Test Site
Full data set (six deployments) from the Surface Wave Instrument Float With Tracking (SWIFT) buoy deployments at the Newport South Energy Test Site during extreme wave events.
Thomson, J. Northwest National Marine Renewable Energy Center
May 01, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Annual Average)
This shapefile represents annual average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm water intak...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Summer Average)
This shapefile represents seasonal summer average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm wa...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Winter Average)
This shapefile represents seasonal winter average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm wa...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Net Power (Summer Average)
This shapefile represents seasonal summer average net power estimates.
The OTEC Plant model predicts the net power production at a specific location, given three inputs: surface temperature (°C), depth (m), and difference between warm surface water temperature and cold deep se...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Net Power (Winter Average)
This shapefile represents seasonal winter average net power estimates.
The OTEC Plant model predicts the net power production at a specific location, given three inputs: surface temperature (°C), depth (m), and difference between warm surface water temperature and cold deep se...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Turbine Depth Optimization Study, Admiralty Inlet, WA
The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu.
Kawase, M. et al University of Washington
Nov 22, 2009
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) Net Power (Annual Average)
This shapefile represents annual average net power estimates.
The OTEC Plant model predicts the net power production at a specific location, given three inputs: surface temperature (°C), depth (m), and difference between warm surface water temperature and cold deep sea water t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) delta T (Annual Average)
This shapefile represents annual average delta T estimates.
ΔT represents the difference in temperature (°C) between the warm and cold water sources used by an OTEC plant at a specific location. Warm water is defined uniformly as water at a depth of 20 m, while cold water is ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) delta T (Summer Average)
This shapefile represents seasonal summer average delta T estimates.
ΔT represents the difference in temperature (°C) between the warm and cold water sources used by an OTEC plant at a specific location. Warm water is defined uniformly as water at a depth of 20 m, while cold ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
ALFA Station Keeping Results for Seabotix vLBV300 Underwater Vehicle near Newport, OR
This data set presents results testing the station keeping abilities of a tethered Seabotix vLBV300 underwater vehicle equipped with an inertial navigation system. These results are from an offshore deployment on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.1...
Hollinger, G. Oregon State University
Apr 20, 2016
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible