Search OEDI Data
Showing results 1 - 5 of 5.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Kinetics of Chlorite Dissolution at Elevated Temperatures and CO2 Conditions
Chlorite dissolution kinetics were measured under far from equilibrium conditions using a mixed-flow reactor over temperatures of 100-275 degrees C at pH values of 3.0-5.7 in a background solution matrix of 0.05 m NaCl. Over this temperature range, magnesium was released congruent...
Carroll, S. et al Lawrence Livermore National Laboratory
Jul 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Chlorite, Biotite, Illite, Muscovite and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 deg C
Chemical reactions pose an important but poorly understood threat to EGS long-term success because of their impact on fracture permeability. This report summarizes the dissolution rate equations for layered silicates where data were lacking for geothermal systems. Here we report ...
Carroll, S. et al Lawrence Livermore National Laboratory
Feb 24, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chlorite Dissolution Kinetics at Variable pH and Temperatures up to 275C
FY13 annual report describing the calculations and results associated with the data and dissolution rate contained in "Chlorite Kinetic Dissolution Data and Rate" (linked below).
Carroll, S. and Smith, M. Lawrence Livermore National Laboratory
Oct 01, 2013
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chemical Impact of Elevated CO2 on Geothermal Energy Production
Numerical simulations have shown that the use of supercritical CO2 instead of water as a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal energy production and...
Carroll, S. et al Lawrence Livermore National Laboratory
Jan 01, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
A Thermal-Hydrological-Chemical Model for the EGS Demonstration Project at Newberry Volcano, OR
Newberry Volcano in Central Oregon is the site of a Department of Energy funded Enhanced Geothermal System (EGS) Demonstration Project. Stimulation and production of an EGS is a strong perturbation to the physical and chemical environment, giving rise to coupled Thermal-Hydrologic...
Sonnenthal, E. et al National Energy Technology Laboratory
Jan 30, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible