Search OEDI Data
Showing results 1 - 25 of 530.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
EGS Collab Experiment 1: Common Discrete Fracture Network
This package includes data and models that support hydraulic fracture stimulation and fluid circulation experiments in the Sanford Underground Research Facility (SURF). A paper by Schwering et al. (2020) describes the deterministic basis for developing a "common" discrete fracture...
Schwering, P. et al Sandia National Laboratories
Sep 18, 2019
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Utah FORGE: 2024 Discrete Fracture Network Model Data
The Utah FORGE 2024 Discrete Fracture Network (DFN) Model dataset provides a set of files representing discrete fracture network modeling for the FORGE site near Milford, Utah. The dataset includes four distinct DFN model file sets, each corresponding to different time frames and ...
Finnila, A. and Jones, C. Energy and Geoscience Institute at the University of Utah
Sep 08, 2024
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Utah FORGE: Well 16A(78)-32 Simplified Discrete Fracture Network Data
The FORGE team is making these fracture models available to researchers wanting a set of natural fractures in the FORGE reservoir for use in their own modeling work. They have been used to predict stimulation distances during hydraulic stimulation at the open toe section of well 1...
Finnila, A. Golder Associates Inc.
Jun 01, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small nu...
Fu, P. and Carrigan, C. Lawrence Livermore National Laboratory
Jan 01, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE: Discrete Fracture Network and Fracture Propagation Modelling
Design and Implementation of Innovative Stimulation Treatments to Maximize Energy Recovery Efficiency at the Utah Forge Site
Sharma, M. and Cao, M. University of Texas
Feb 07, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE: 2023 Large Upscaled Discrete Fracture Network Models
This dataset includes the data and a report on the large upscaled discrete fracture network modeling done for the Utah FORGE project in 2023. The FORGE modeling team is making five discrete fracture network (DFN) realizations of a large reservoir model available to researchers. Th...
Finnila, A. Energy and Geoscience Institute at the University of Utah
Oct 02, 2023
17 Resources
0 Stars
Publicly accessible
17 Resources
0 Stars
Publicly accessible
Utah FORGE Well 16A(78)-32 Stimulation DFN Fracture Plane Evaluation and Data
This dataset includes files used to fit planar fractures through the preliminary earthquake catalogs of the three stages of the April 2022 well 16A(78)-32 stimulation which is linked bellow. These planar features have been used to update the FORGE reference Discrete Fracture Netwo...
Finnila, A. WSP Golder
Oct 27, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in ...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE Project 3-2417: Simulations for Distributed Acoustic Sensing Strain Signatures as an Indicator of Fracture Connectivity
This dataset encompasses simulations of strain signatures from both hydraulically connected and "near-miss" fractures in enhanced geothermal systems (EGS). The files and results are presented from the perspective of digital acoustic sensing's (DAS) potential to differentiate the t...
Ward-Baranyay, M. et al Rice University
Jan 01, 2023
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Thermal Drawdown Induced Flow Channeling in Fractured Geothermal Reservoirs: Rock Mechanics and Rock Engineering
We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal "hydrological" mechanical simulator is used to study the interactions between fluid flow, temperature change, and t...
Fu, P. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
SMP and Fracture Modeling
The problem of loss circulation in geothermal wells is inherently challenging due to high temperatures, brittle rocks, and presence of abundant fractures. Because of the inherent challenges in geothermal environments, there are limitations in selecting proper lost circulation mate...
Salehi, S. et al University of Oklahoma
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Using Fully Coupled Hydro-Geomechanical Numerical Test Bed to Study Reservoir Stimulation with Low Hydraulic Pressure
This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimu...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 31, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Nov 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 4-2492: Design and Implementation of Innovative Stimulation Treatments to Maximize Energy Recovery 2024 Annual Workshop Presentation
This is a presentation on the Design and Implementation of Innovative Stimulation Treatments to Maximize Energy Recovery Efficiency by The University of Texas at Austin, presented by Mukul M. Sharma. This video slide presentation discusses the following objectives: (1) to place fr...
Sharma, M. Energy and Geoscience Institute at the University of Utah
Sep 16, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations
This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key too...
Templeton, D. et al Lawrence Livermore National Laboratory
Apr 18, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE: Discrete Fracture Network (DFN) Data
The FORGE team is making these fracture models available to researchers wanting a set of natural fractures in the FORGE reservoir for use in their own modeling work. They have been used to predict stimulation distances during hydraulic stimulation at the open toe section of well 1...
Finnila, A. and Podgorney, R. Golder Associates Inc.
Jun 24, 2020
66 Resources
0 Stars
Publicly accessible
66 Resources
0 Stars
Publicly accessible
Fallon FORGE: Distinct Element Reservoir Modeling
Archive containing input/output data for distinct element reservoir modeling for Fallon FORGE. Models created using 3DEC, InSite, and in-house Python algorithms (ITASCA). List of archived files follows; please see 'Modeling Metadata.pdf' (included as a resource below) for addition...
Blankenship, D. et al Sandia National Laboratories
Mar 12, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Seismic Analysis of Spatio-Temporal Fracture Generation During EGS Resource Development Deviatoric MT, Fracture Network, and Final Report
This submission contains 167 deviatoric moment tensor (MT) solutions for the seismicity observed two years prior and three years post start of injection activities at The Geysers Prati 32 EGS Demonstration. Also included is a statistical representation of the properties of 751 fra...
Gritto, R. et al Array Information Technology
Sep 01, 2018
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE Development of a Reservoir Seismic Velocity Model and Seismic Resolution Study
This is data from and a final report on the development of a 3D velocity model for the larger FORGE area and on the seismic resolution in the stimulated fracture volume at the bottom of well 16A-32. The velocity model was developed using RMS velocities of the seismic reflection su...
Vasco, D. and Chan, C. Array Information Technology
Apr 30, 2022
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
SMP Preparation, Programming, and Characterization
The problem of loss circulation in geothermal wells is inherently challenging due to high temperatures, brittle rocks, and presence of abundant fractures. Because of the inherent challenges in geothermal environments, there are limitations in selecting proper lost circulation mate...
Salehi, S. et al University of Oklahoma
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Utah FORGE LBNL 3-2535 Preliminary Report on Development of a Reservoir Seismic Velocity Model
This report describes the development of a preliminary 3D seismic velocity model at the Utah FORGE site and first results from estimating seismic resolution in the generated fracture volume during Stage 3 of the April 2022 stimulation.
A preliminary 3D velocity model for the larg...
Gritto, R. Array Information Technology
Jan 30, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs
Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible