Search OEDI Data
Showing results 1 - 11 of 11.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
University of Illinois Campus Deep Direct-Use Feasibility Study Design of Injection Well #1 (CCS1)
Includes specification sheet, wellbore geometry, and drilling fluids at section target depth associated with the design of Injection Well #1 (CCS1) for the Illinois Basin Decatur Project (IBDP).
Greenberg, S. University of Illinois
Mar 30, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Subsurface Temperature Profile
High resolution fiber-optic distributed temperature sensing logs from the Illinois Basin Decatur Project (IBDP) in Decatur, IL were used to model the thermal profile in the Illinois Basin.
Lin, Y. et al University of Illinois
Jun 13, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Designs for Deep Injection and Monitoring Wells
The following information is provided about the design of deeps wells constructed in the Illinois Basin to store, sequester, or dispose of CO2, natural gas, and industrial wastes.
Lin, Y. et al University of Illinois
Mar 30, 2018
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Extraction/Injection Well Design for Deep Direct Use at University of Illinois at Urban-Champaign
The large scale Deep Direct Use (DDU) geothermal project in the low temperature environment of the Illinois Basin requires drilling and completing two wells. One well would be the extraction (producing) well and would be built to deliver a flow rate of approximately 6000 barrels ...
Kirksey, J. and Lu, Y. University of Illinois
Mar 31, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Oilwell Conversion (Well API 121913310501) to Geothermal Heat Storage Well for Flexible Electricity Storage
Geothermal growth is limited by a lack of geographically dispersed high-temperature thermal resources and high initial upfront investment in characterization and well construction. This project intended to address the challenges of energy supply intermittency and enhance grid resi...
Malkewicz, N. et al University of Illinois
May 05, 2021
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
Environmental Life Cycle Assessment Spreadsheet tool for Deep Direct-Use Geothermal at the University of Illinois at Urbana-Champaign Campus
A Life Cycle Assessment (LCA) spreadsheet tool was developed to analyze potential environmental benefits of a deep direct-use (DDU) geothermal energy system (GES) at the University of Illinois at Urbana-Champaign (U of IL) campus. The LCA spreadsheet tool is a unique contribution ...
Tinjum, J. et al University of Illinois
Jan 31, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geology Log and Drilling Prospectus
Geology log and drilling prospectus for University of Illinois at Urbana-Champaign (UIUC) Energy Farm.
Nelson, W. University of Illinois
Apr 16, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Porosity and Permeability of Rock Formations
Porosity and permeability data from published and unpublished sources for the St. Peter and Mt. Simon Sandstones in the Illinois Basin.
Damico, J. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Geocellular model of St. Peter Sandstone for University of Illinois at Urbana-Champaign DDU Feasibility Study
The geocellular model of the St. Peter Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 ...
Damico, J. University of Illinois
Dec 31, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Geocellular Model of Mt. Simon Sandstone for University of Illinois at Urbana-Champaign DDU feasibility study
The geocellular model of the Mt. Simon Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 ...
Damico, J. University of Illinois
Dec 31, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Feasibility of a Deep Direct-Use Geothermal System at the University of Illinois Urbana-Champaign
Paper authored by Stumpf et al. for the 2018 Geothermal Resources Council Annual Meeting held in Reno, NV USA. Included with the paper is the Microsoft PowerPoint presentation made at the GRC meeting and data tables associated with some of the figures.
Stumpf, A. et al University of Illinois
Dec 31, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible