OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 76 - 100 of 521.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"Testing Expertise and Access for Marine Energy Research"×
Wind Energy×

UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

Tower TTU (SWiFT) Tower, All levels Processed Data

**Overview** This dataset includes processed sonic anemometer measurements at the 200-m SWIFT tower near Lubbock, Texas on July 4, 2012. Observations are of a canonical convective atmospheric boundary layer. Subgrid stresses and fluxes are computed by subtracting 15-min running a...
Kosovic, B. Wind Energy Technologies Office (WETO)
Jul 03, 2012
1 Resources
0 Stars
Publicly accessible

Flow Redirection and Induction in Steady State (FLORIS) Wind Plant Power Production Data Sets

This dataset contains turbine and plant-level power outputs for 252,500 cases of diverse wind plant layouts operating under a wide range of yawing and atmospheric conditions. The power outputs were computed using the Gaussian wake model in NREL's FLOw Redirection and Induction in ...
Ramos, D. et al National Renewable Energy Laboratory
Feb 12, 2021
5 Resources
0 Stars
Publicly accessible

Lidar LMCT WTX WindTracer, Gordon Ridge Raw Data

**Overview** Long-range scanning Doppler lidar located on Gordon Ridge. The WindTracer provides high-resolution, long-range lidar data for use in the WFIP2 program. **Data Details** The system is configured to take data in three different modes. All three modes take 15 minutes ...
Barr, K. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible

Quantifying and Monetizing Renewable Energy Resiliency

As part of the seed LDRD in 2017 we generated catastrophe models to look at the value of resiliency from an insurance perspective. These data sets reflect the inputs and outputs of that analysis.
Lisell. . et al National Renewable Energy Laboratory
Mar 13, 2018
3 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

Camera / Raw Data

**Overview** The SUMR-D CART2 turbine data are recorded by the CART2 wind turbine's supervisory control and data acquisition (SCADA) system for the Advanced Research Projects Agency–Energy (ARPA-E) SUMR-D project located at the National Renewable Energy Laboratory (NREL) Flatir...
Scholbrock, A. Wind Energy Technologies Office (WETO)
Sep 10, 2019
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

Irradiation Data from NREL'S MDIC Stations

The Measurement and Instrumentation Data Center (MIDC) provides Irradiance and Meteorological Data from these stations: NREL Solar Radiation Research Lab, BSRN Prototype Station, Atmospheric Optical Calibration System, TSR-1, RSR Version 2, RSR Version 1, National Wind Technology...
Afshin, A. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
1 Resources
0 Stars
In curation

California Quality-controlled Reanalysis and Observational Data for Buoy (120), Humboldt / Derived Data

**Overview** This collection provides spatiotemporally paired reanalysis and satellite data to supplement the lidar buoy observations during the California deployments. Point time series of observed and reanalysis data are provided, using inverse distance weighting to geolocate ...
Sheridan, L. Wind Energy Technologies Office (WETO)
Sep 30, 2020
1 Resources
0 Stars
Publicly accessible

California Quality-Controlled Reanalysis and Observational Data for Buoy (130), Morro Bay / Derived Data

**Overview** This collection provides spatiotemporally paired reanalysis and satellite data to supplement the lidar buoy observations during the California deployments. Point time series of observed and reanalysis data are provided, using inverse distance weighting to geolocate ...
Sheridan, L. Wind Energy Technologies Office (WETO)
Sep 30, 2020
1 Resources
0 Stars
Publicly accessible

Typical Solar Years (TSYs) and Typical Wind Years (TWYs) for the Assessment of PV System and Wind Turbine Performance

This dataset comprises Typical Solar Years (TSYs) and Typical Wind Years (TWYs) for the efficient assessment of PV system and wind turbine performance for over 2,000 locations across the U.S. TSYs and TWYs are single synthetic years generated from the National Aeronautics and Spac...
Zeng, Z. et al Argonne National Laboratory
Jul 14, 2024
7 Resources
0 Stars
Publicly accessible

Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test

The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability. The GRC uses a combined gear...
Keller and RobbNational Renewable Energy Laboratory
May 02, 2016
17 Resources
0 Stars
Publicly accessible

2021 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies

Starting in 2015 NREL has presented the Annual Technology Baseline (ATB) in an Excel workbook that contains detailed cost and performance data, both current and projected, for renewable and conventional technologies. The workbook includes a spreadsheet for each technology. This ve...
Vimmerstedt, L. et al National Renewable Energy Laboratory (NREL)
Jul 12, 2021
11 Resources
0 Stars
Publicly accessible

INTEGRATE Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements

The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements) project is developing a new inverse-design capability for the aerodynamic design of wind turbine rotors using invertible neural networks. This AI-based design techno...
Vijayakumar, G. et al National Renewable Energy Laboratory (NREL)
May 04, 2021
8 Resources
0 Stars
Publicly accessible

Wind Turbine / Reviewed Data

**Overview** The SUMR-D CART2 turbine data are recorded by the CART2 wind turbine's supervisory control and data acquisition (SCADA) system for the Advanced Research Projects Agency–Energy (ARPA-E) SUMR-D project located at the National Renewable Energy Laboratory (NREL) Flatir...
Scholbrock, A. Wind Energy Technologies Office (WETO)
Oct 04, 2019
1 Resources
0 Stars
Publicly accessible
<< Previous12345678Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service