Search OEDI Data
Showing results 551 - 575 of 2760.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Surface Meteorological Station PNNL 10m Sonic, Physics site-4 Raw Data
**Overview**
This dataset provides fast response wind and virtual sonic temperature data.
**Data Details**
Each meteorological (met) station has one sonic anemometer (Gill R3-50, omnidirectional) mounted on top of a 10-m tower. Sensor verticality (within a degree) has been veri...
Pekour, M. and Berg, L. Wind Energy Technologies Office (WETO)
Mar 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 10m Sonic, Physics site-4 Reviewed Data
**Overview**
This dataset provides fast response wind and virtual sonic temperature data.
**Data Details**
Each meteorological (met) station has one sonic anemometer (Gill R3-50, omnidirectional) mounted on top of a 10-m tower. Sensor verticality (within a degree) has been veri...
Pekour, M. and Berg, L. Wind Energy Technologies Office (WETO)
Mar 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 10m Sonic, Physics site-5 Raw Data
**Overview**
This dataset provides fast response wind and virtual sonic temperature data.
**Data Details**
Each meteorological (met) station has one sonic anemometer (Gill R3-50, omnidirectional) mounted on top of a 10-m tower. Sensor verticality (within a degree) has been veri...
Pekour, M. and Berg, L. Wind Energy Technologies Office (WETO)
Mar 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 10m Sonic, Physics site-5 Reviewed Data
**Overview**
This dataset provides fast response wind and virtual sonic temperature data.
**Data Details**
Each meteorological (met) station has one sonic anemometer (Gill R3-50, omnidirectional) mounted on top of a 10-m tower. Sensor verticality (within a degree) has been veri...
Pekour, M. and Berg, L. Wind Energy Technologies Office (WETO)
Mar 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar California Leosphere Windcube 866 (120), Humboldt Raw Data
**Overview**
Deployment off the coast of Humboldt, California
**Data Details**
Windcube Data Files:
lidar.z05.00.20200929.000000.gyro.7z
lidar.z05.00.20200929.000000.rtd.7z
lidar.z05.00.20200929.000000.sta.7z
lidar.z05.00.20200929.000000.stdrtd.7z
lidar.z05.00.20...
Gorton, A. Wind Energy Technologies Office (WETO)
Oct 01, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar DOE ARM StreamLine Doppler Lidar (Halo) Raw Data
**Overview**
Refer to attached documentation.
**Data Details**
**Product type should be "derived" not "observed."**
**Data Quality**
Refer to attached documentation.
**Uncertainty**
Refer to attached documentation.
Newsom, R. Wind Energy Technologies Office (WETO)
Mar 05, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 8 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 9 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
New Mexico Play Fairway Analysis: New Mexico Available Wells for Geochemical Sampling
This is a map package that is used to show the wells in New Mexico that may be available for geochemical sampling.
Pepin, J. New Mexico Institute of Mining and Technology
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar California Leosphere Windcube 866 (130), Morro Bay Raw Data
**Overview**
Deployment off the coast of Morro Bay, California.
**Data Details**
Windcube Data Files:
lidar.z06.00.20200929.000000.gyro.7z
lidar.z06.00.20200929.000000.rtd.7z
lidar.z06.00.20200929.000000.sta.7z
lidar.z06.00.20200929.000000.stdrtd.7z
lidar.z06.00....
Gorton, A. Wind Energy Technologies Office (WETO)
Sep 28, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Elizabeth City State University: Elizabeth City, North Carolina (Data)
The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradianc...
Stoffel and AndreasNational Renewable Energy Laboratory
Dec 17, 2014
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible