OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 501 - 525 of 2804.
Show results per page.
Order by:
Available Now:
Filters
Research Areas
Accessibility
Data Type
Organization
Source
"Testing and Expertise for Marine Energy"×

Brookfield Homes Passive House Performance Evaluation

TO4 3.1.3: Brookfield Homes Short-Term Results TO5 3.1.3: Brookfield Passive House Monitoring To further define its market position on high performance homebuilding, Brookfield worked with IBACOS and the Building America program to design and construct a Passive House (PH) certif...
Beach, R. et al Ibacos Innovation
Apr 27, 2016
4 Resources
0 Stars
Publicly accessible

Utah FORGE: Well 16A(78)-32/Well16B(78)-32 Circulation Test Data

This dataset encompasses the collected data and associated reports from the low-rate injection circulation test conducted on wells 16A(78)-32 and 16B(78)-32 in July 2023 at Utah FORGE. It includes comprehensive raw circulation data, captured by Pason and Schlumberger (SLB). The da...
Mclennan, J. and Xing, P. Energy and Geoscience Institute at the University of Utah
Jul 19, 2023
1 Resources
0 Stars
Publicly accessible

Wind Energy Resource Data

NREL's Geographic Information System (GIS) team offers both a national wind resource assessment of the United States and high-resolution wind data. The national wind resource assessment was created for the U.S. Department of Energy in 1986 by the Pacific Northwest Laboratory and i...
Webmaster, . and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
1 Resources
0 Stars
In curation

Method to Recover Media Ligand Losses During Sorption of Rare Earth Elements from Simulated Geothermal Brines

This document describes the method and results of an in-situ experiment used to confirm that ligand bleed from a sorptive media can be contained. The experiment focused on maintaining the media's sorption of rare earth elements (REE) obtained from a simulated geothermal brine dop...
Stull, D. Tusaar Corp.
May 24, 2016
2 Resources
0 Stars
Publicly accessible

Utah FORGE: Well 16A(78)-32 Core-Flooding Experiment Results

This dataset contains core-flood experimental results from the Utah FORGE project, generated through laboratory tests at Lawrence Livermore National Laboratory. The experiments were conducted at temperatures of 100C and 200C using core samples from the 16A(78)-32 well. The primary...
Smith, M. et al Lawrence Livermore National Laboratory
Apr 04, 2024
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence H Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds,...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence I Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence J Raw Data

**Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speed...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

Literature Data on Foam Fracturing Fluid

At the beginning of this project, the Temple team spent significant effort to collect data relevant to foam fracturing. More than 40 articles/reports were found in the open literature that reported the properties of aqueous foams under various testing conditions. The foam properti...
Thakor, V. et al Temple University
Nov 08, 2021
2 Resources
0 Stars
Publicly accessible

HERO WEC Bills of Materials: WEC, RO System, and Submersible Pump

This submission includes detailed Bills of Materials for the NREL-designed and built Hydraulic and Electric Reverse Osmosis Wave Energy Converter (HERO WEC), as well as the reverse osmosis assembly and submersible pump that are used in the HERO WEC. The WEC file is specific to th...
Jenne, S. and Panzarella, J. National Renewable Energy Laboratory
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 2: Hydraulic Pressure Test Results

The EGS Collab experiment 2 was focused on testing shear stimulation techniques. Shear stimulation, in this case, means using hydraulic pressure to cause shear slip on preexisting fracture or fault planes such that the hydraulic conductivity of the fracture or fault increases. The...
Burghardt, J. et al Lawrence Berkeley National Laboratory
Feb 17, 2023
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence S Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence T Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

UAE6 Wind Tunnel Tests Data UAE6 Sequence U Raw Data

**Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible

OC6 Phase Ia Nonlinear hydrodynamic loading validation dataset

**Overview** Two validation campaigns were examined within the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) Phase 1 project to examine the modeling tools' underprediction of loads and motion of a floating wind semisubmersible (semi) at...
Robertson, A. Wind Energy Technologies Office (WETO)
Aug 08, 2021
1 Resources
0 Stars
Publicly accessible

Risk Management Plan and Risk Register for Design Low-Power Wave Energy Converter for Non-Grid Applications

Risk Registers for major subsystems completed according to the methodology described in the Risk Management Plan [DE-EE0008627 D1.2 Risk Management Plan PD v1.1 07-19-2019.pdf], also included here.
Amon, E. Columbia Power Technologies, Inc.
Jul 19, 2019
17 Resources
0 Stars
Publicly accessible

Advanced TidGen Power System LCOE Calculations and System Overview

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU...
Marnagh, C. and McEntee, J. Ocean Renewable Power Company
Jun 14, 2018
4 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.hrrr.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/retro.rap.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

HERO WEC V1 Upgrades SolidWorks Models (WEC, RO System, and Submersible Pump Housing)

The attached zip files include SolidWorks pack-and-go assemblies of NREL's HERO WEC (hydraulic and electric reverse osmosis wave energy converter), the reverse osmosis (RO) assembly, and the submersible pump assembly that is used to provide flow to the RO assembly in the electric ...
Jenne, S. and Panzarella, J. National Renewable Energy Laboratory
Jan 08, 2024
4 Resources
0 Stars
Publicly accessible

Utah FORGE 3-2514: A Strain Sensing Array to Characterize Deformation at the FORGE Site Workshop Presentation

This is a presentation on the Strain Sensing Array to Characterize Deformation at the FORGE Site project by Clemson University, presented by Lawrence Murdoch. The project's objective was to evaluate the feasibility of measuring and interpreting tensor strain data to improve the pe...
Murdoch, L. et al Clemson University
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
<< Previous16171819202122232425Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service