Search OEDI Data
Showing results 51 - 75 of 103.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data
**Overview**
Sequence V: Tip Plate (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data
**Overview**
Sequence W: Extended Blade (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microwave Radiometer UND Radiometrics MWR, Rufus Reviewed Data
**Overview**
Reviewed dataset that also includes post-reprocessed level1 and level2 data files from November 2015 to May 2016 (refer to "Additional Information").
Monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%), and liquid water (gm-3) u...
Leo, L. Wind Energy Technologies Office (WETO)
Nov 18, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence Q Raw Data
**Overview**
Sequence Q: Dynamic Inflow (P)
This sequence was designed to characterize the dynamic inflow variation using the five-hole
probes that extend upwind of the leading edge of the blade. This test sequence used an upwind,
rigid turbine with a 0° cone angle. The wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar ANL Wind Profiler with RASS, Goldendale Raw Data
**Overview**
**Winds**
A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities ...
Wilczak, J. and King, C. Wind Energy Technologies Office (WETO)
Mar 13, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar ANL Wind Profiler with RASS, Yakima Raw Data
**Overview**
**Winds**
A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities ...
Wilczak, J. and King, C. Wind Energy Technologies Office (WETO)
Mar 14, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Radar ANL Wind Profiler, Walla Walla Raw Data
**Overview**
**Winds**
A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities ...
Wilczak, J. and King, C. Wind Energy Technologies Office (WETO)
Mar 13, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Sodar ND Scintec MFAS Wind Profiler with RASS, Rufus Reviewed Data
**Overview**
These data provide vertical mean profiles of wind and direction (30 min time step and 10 m range gate).
**Data Details**
Data averaged over an interval of 30 minutes.
Wind Direction is from Geographic North.
Time stamp is included in each data file.
Location: Jo...
Fernando, J. et al Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
OC6 Phase Ia Nonlinear hydrodynamic loading validation dataset
**Overview**
Two validation campaigns were examined within the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) Phase 1 project to examine the modeling tools' underprediction of loads and motion of a floating wind semisubmersible (semi) at...
Robertson, A. Wind Energy Technologies Office (WETO)
Aug 08, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 8 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 9 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar ND Halo Scanning Doppler, Boardman Raw Data
**Overview**
The University of Notre Dame (ND) scanning lidar dataset used for the WFIP2 Campaign is provided. The raw dataset contains the radial velocity and backscatter measurements along with the beam location and other lidar parameters in the header.
**Data Details**
1) ...
Fernando, J. et al Wind Energy Technologies Office (WETO)
Dec 12, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible