OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 26 - 50 of 60.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"production capacity"×
Wind Energy×

Airport and Heliport Setbacks

This dataset represents a first-order quantification of airport and heliport setback requirements based on the Federal Aviation Administration (FAA) 14 CFR Part 77.9. It defines the following FAA notice criteria that we use to create runway buffers. Runways longer than 3,200 feet ...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

Maximum demand charge rates for commercial and industrial electricity tariffs in the United States

NREL has assembled a list of U.S. retail electricity tariffs and their associated demand charge rates for the Commercial and Industrial sectors. The data was obtained from the Utility Rate Database. Keep the following information in mind when interpreting the data: (1) These data...
McLaren. . et al National Renewable Energy Laboratory
Sep 19, 2017
1 Resources
0 Stars
Publicly accessible

Land of Opportunity: Geothermal, Land-based Wind, and Solar PV Potential on Federal Lands

This data packet contains supply curves and a composite siting exclusion TIFF for geothermal, land-based wind, and solar PV across the contiguous United States with specific consideration on federal lands. The supply curves offer comprehensive metrics such as capacity (MW) for eac...
Geospatial, N. National Renewable Energy Laboratory
Jan 01, 2025
28 Resources
0 Stars
Publicly accessible

Wind Turbine Oil and Gas Pipeline Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from oil and gas pipelines. A setback requirement is a minimum distance from a pipeline that an energy project may be developed. As of April 2022, no ordinances were discovered for any counties. Such ordinances are likely to...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

Annual Average Modeled Wind Speed for Puerto Rico and the Virgin Islands at a 100 Meter Hub Height

This is supplemental data to the 50 m height data set that was validated by NREL and wind energy meteorological consultants in 2007. The data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m spatial re...
Heimiller, D. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation

Annual Average Modeled Wind Speed (m/s) for Puerto Rico and the Virgin Islands at a 70 Meter Hub Height.

This is supplemental data to the 50 m height data set that was validated by NREL and wind energy meteorological consultants in 2007. The data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m spatial re...
Heimiller, D. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation

2020 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies

Starting in 2015 NREL has presented the Annual Technology Baseline (ATB) in an Excel workbook that contains detailed cost and performance data, both current and projected, for renewable and conventional technologies. The workbook includes a spreadsheet for each technology. This up...
Akar. . et al National Renewable Energy Laboratory
Jul 28, 2020
5 Resources
0 Stars
Publicly accessible

2019 Annual Technology Baseline ATB Cost and Performance Data for Electricity Generation Technologies

Starting in 2015 NREL has presented the Annual Technology Baseline ATB in an Excel workbook that contains detailed cost and performance data both current and projected for renewable and conventional technologies. The workbook includes a spreadsheet for each technology. This update...
Vimmerstedt. . et al National Renewable Energy Laboratory
Jul 23, 2019
5 Resources
0 Stars
Publicly accessible

2014 Wind Turbine Gearbox Damage Distribution based on the NREL Gearbox Reliability Database

Despite the improvements in wind turbine gearbox design and manufacturing practices, the wind industry is still challenged by premature wind turbine gearbox failures. To help address this industry-wide challenge, a consortium called the Gearbox Reliability Collaborative (GRC) was ...
Sheng, S. National Renewable Energy Laboratory
Feb 09, 2015
1 Resources
0 Stars
In curation

Wind Turbine Road Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from roads based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a road that an energy project may be developed, and these varied widely across the counties in which they exis...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Railroad Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from railroad based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a railroad that an energy project may be developed, and these varied widely across the counties in which th...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Transmission Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from transmission based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from transmission infrastructure that an energy project may be developed, and these varied widely across the...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Structure Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from structures based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a structure that an energy project may be developed, and these varied widely across the counties in which...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Water Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from water based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from water that an energy project may be developed, and these varied widely across the counties in which they exist...
Geospatial Data Science, N. and Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_esrl.graphics.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_wfip2.icbc.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_esrl.icbc.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.rap_esrl.icbc.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
<< Previous123Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service