Search OEDI Data
Showing results 26 - 50 of 82.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
UAE6 Wind Tunnel Tests Data UAE6 Sequence 5 Raw Data
**Overview**
Sequence 5: Sweep Wind Speed (F,P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed was
ramped from 5 m/s to 25 m/s by the wind tunnel operator. This was repeated with a decreasing
ramp. The yaw angle was maintained at 0°. The ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 7 Raw Data
**Overview**
Sequence 7: Shroud Operating (P)
This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was
maintained at 0° by adjusting the na...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Lidar ND Halo Scanning Doppler, Boardman Raw Data
**Overview**
The University of Notre Dame (ND) scanning lidar dataset used for the WFIP2 Campaign is provided. The raw dataset contains the radial velocity and backscatter measurements along with the beam location and other lidar parameters in the header.
**Data Details**
1) ...
Fernando, J. et al Wind Energy Technologies Office (WETO)
Dec 12, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence M Raw Data
**Overview**
Sequence M: Transition Fixed (P)
Test sequence M used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from
5 m/s to 15 m/s. Yaw angles ranged from 0° to 90°. The blade tip pitch was 3°. The rotor rotated
at 72 RPM. Blade pressure measurement...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data
**Overview**
Sequence V: Tip Plate (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data
**Overview**
Sequence W: Extended Blade (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence N Raw Data
**Overview**
Sequence N: Sin AOA, Rotating (P)
This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the
presence of rotational influences by varying blade pitch angle. Test sequence N used an upwind,
rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence P Raw Data
**Overview**
Sequence P: Wake Flow Visualization, Upwind (P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 15 m/s. Yaw angles of 0° to –60° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence Q Raw Data
**Overview**
Sequence Q: Dynamic Inflow (P)
This sequence was designed to characterize the dynamic inflow variation using the five-hole
probes that extend upwind of the leading edge of the blade. This test sequence used an upwind,
rigid turbine with a 0° cone angle. The wind sp...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 8 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 9 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence K Raw Data
**Overview**
Sequence K: Step AOA, Probes (P)
This sequence was designed to quantify the 3-D blade static angle-of-attack response in the
presence of rotational influences by varying the blade pitch angle. Sequence K used an upwind,
rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence L Raw Data
**Overview**
Sequence L: Step AOA, Parked (P)
This sequence was designed to quantify the 3-D blade static angle-of-attack response in the
absence of rotational influences by varying the blade pitch angle. This test sequence used an
upwind, rigid turbine with a 0° cone angle. Wi...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence O Raw Data
**Overview**
Sequence O: Sin AOA, Parked (P)
This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the
absence of rotational influences by varying blade pitch angle. This test sequence used an upwind,
rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence E Raw Data
**Overview**
Sequence E: Yaw Releases (P)
This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds
ranged from 7 m/s to 17 m/s. Initial yaw angles of ±90° were achieved. The blade tip pitch was
3°. The rotor rotated at 72 RPM. Blade and probe...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence R Raw Data
**Overview**
Sequence R: Step AOA, No Probes (P)
This sequence was designed to quantify the effect of the five-hole probes on the 3-D blade static
angle-of-attack response in the presence of rotational influences by repeating Sequence K without
five-hole probes. This test sequen...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Analysis of a fixed-bottom cylinder in a wave basin
**Overview**
The Offshore Code Comparison, Collaboration, Continued, with Correlation (OC5) is an international research project run under the International Energy Agency (IEA) Wind Task 30. The project is focused on validating the tools used design offshore wind systems. OC5 con...
Robertson, A. Wind Energy Technologies Office (WETO)
Jul 22, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Analysis of a suspended cylinder in a wave basin
**Overview**
The Offshore Code Comparison, Collaboration, Continued, with Correlation (OC5) is an international research project run under the International Energy Agency (IEA) Wind Task 30. The project is focused on validating the tools used design offshore wind systems. OC5 con...
Robertson, A. Wind Energy Technologies Office (WETO)
Jul 22, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Analysis of a scaled wind turbine on a floating semisubmersible in an ocean basin
**Overview**
The Offshore Code Comparison, Collaboration, Continued, with Correlation (OC5) is an international research project run under the International Energy Agency (IEA) Wind Task 30. The project is focused on validating the tools used design offshore wind systems. OC5 con...
Robertson, A. Wind Energy Technologies Office (WETO)
Jul 23, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications
Many weather years of high-quality wind data are widely accepted in the grid integration community to be important for studying wind energy technical potential, energy system operations, and grid resilience.
NREL makes high-quality wind and solar resource data available. NREL's G...
Buster, G. et al The National Renewable Energy Lab (NREL)
Oct 15, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
WIND Toolkit Long-Term Ensemble Dataset
WIND Toolkit Long-term Ensemble Dataset (WTK-LED), an updated version of the meteorological WIND Toolkit, is a meteorological dataset providing high-resolution time series, including interannual variability and model uncertainty of wind speed at every modeling grid point to indica...
Wang, J. et al National Renewable Energy Laboratory (NREL)
Jan 24, 2024
3 Resources
1 Stars
In curation
3 Resources
1 Stars
In curation
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible