Search OEDI Data
Showing results 26 - 50 of 87.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Microbarograph ESRL Hi-Res Microbarograph, Umatilla Reviewed Data
**Overview**
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' ...
Wilczak, J. Wind Energy Technologies Office (WETO)
Feb 17, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microbarograph ESRL Hi-Res Microbarograph, Walla Walla Raw Data
**Overview**
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' ...
McCaffrey, K. Wind Energy Technologies Office (WETO)
Jul 20, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microbarograph ESRL Hi-Res Microbarograph, Walla Walla Reviewed Data
**Overview**
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' ...
Wilczak, J. Wind Energy Technologies Office (WETO)
Mar 28, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microbarograph ESRL Hi-Res Microbarograph, Wasco Airport Raw Data
**Overview**
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' ...
McCaffrey, K. Wind Energy Technologies Office (WETO)
Jul 20, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Microbarograph ESRL Hi-Res Microbarograph, Wasco Airport Reviewed Data
**Overview**
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' ...
Wilczak, J. Wind Energy Technologies Office (WETO)
Dec 12, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence P Raw Data
**Overview**
Sequence P: Wake Flow Visualization, Upwind (P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 15 m/s. Yaw angles of 0° to –60° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 3m Tower, Physics site-7 Raw Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by th...
Morris, V. Wind Energy Technologies Office (WETO)
Feb 14, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 3m Tower, Physics site-8 Raw Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by th...
Morris, V. Wind Energy Technologies Office (WETO)
Feb 14, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Grass Valley Raw Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by th...
Morris, V. Wind Energy Technologies Office (WETO)
Sep 22, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Hood River Raw Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by th...
Morris, V. Wind Energy Technologies Office (WETO)
Sep 21, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Rufus Raw Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by th...
Morris, V. Wind Energy Technologies Office (WETO)
Sep 23, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Umatilla Raw Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by th...
Morris, V. Wind Energy Technologies Office (WETO)
Aug 31, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 3m Tower, Physics site-7 Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Feb 17, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Grass Valley Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Sep 22, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Hood River Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Sep 21, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Rufus Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Sep 23, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL Short Tower, Umatilla Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Surface Meteorological Station PNNL 3m Tower, Physics site-8 Reviewed Data
**Overview**
In support of the Wind Forecasting Improvement Project, Pacific Northwest National Laboratory (PNNL) deployed surface meteorological stations in Oregon.
**Data Details**
A PNNL computer is used as the base station to download the meteorological data acquired by the...
Berg, L. Wind Energy Technologies Office (WETO)
Feb 14, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Cold-front (D01)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 19, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Cold-front (D02)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 19, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Sea-breeze (D01)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulated wind speed and initial conditions over the WFIP2 region: Sea-breeze (D02)
**Overview**
The purpose of this work is to assess the sensitivity of the forecast for turbine height wind speed to initial condition (IC) uncertainties over the Columbia River Gorge and Columbia River Basin for two typical weather phenomena: a local thermal gradient induced by a...
Liu, Y. Wind Energy Technologies Office (WETO)
Aug 15, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence V Raw Data
**Overview**
Sequence V: Tip Plate (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measurements w...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence W Raw Data
**Overview**
Sequence W: Extended Blade (F)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor
rotated at 72 RPM. Blade pressure measureme...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence 8 Raw Data
**Overview**
Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked
(P)
This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged
from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The
roto...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible