OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 26 - 50 of 2384.
Show results per page.
Order by:
Available Now:
Filters
Research Areas
Accessibility
Data Type
Organization
Source
"database for machine learning"×

GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files

This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
0 Stars
Publicly accessible

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs

Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible

Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files

This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification. In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report

This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Publicly accessible

Topology-Based Machine-Learning for Modeling Power-System Responses to Contingencies

This is the companion dataset to the presentation NREL/PR-6A20-77485, which was presented at the 2020 Joint Statistical Meeting on August 3, 2020. Developed for the machine-learning predictive modeling of power-system responses to disruptions, it contains results of power-system c...
BushNational Renewable Energy Laboratory
Aug 01, 2020
2 Resources
0 Stars
Publicly accessible

Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk

In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible

Active Source Seismic (Ultrasonic) Data from Double-Direct Shear Lab Experiments

Active source ultrasonic data from lab experiments p5270 and p5271 including raw waveforms (WF) and mechanical data (mat). From the PSU team working on the "Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties" project. The fric...
Marone, C. Pennsylvania State University
May 05, 2021
1 Resources
0 Stars
Publicly accessible

BuildingsBench: A Large-Scale Dataset of 900K Buildings and Benchmark for Short-Term Load Forecasting

The BuildingsBench datasets consist of: Buildings-900K: A large-scale dataset of 900K buildings for pretraining models on the task of short-term load forecasting (STLF). Buildings-900K is statistically representative of the entire U.S. building stock. 7 real residential and com...
Emami, P. and Graf, P. National Renewable Energy Laboratory
Dec 31, 2018
6 Resources
1 Stars
Publicly accessible

Hybrid machine learning model to predict 3D in-situ permeability evolution

Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
Nov 22, 2022
4 Resources
0 Stars
Publicly accessible

BUTTER Empirical Deep Learning Dataset

The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four le...
Tripp, C. et al National Renewable Energy Laboratory
May 20, 2022
4 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Characterizing In-Situ Stress with Laboratory Modelling and Field Measurements 2024 Annual Workshop Presentation

This is a presentation on A Multi-Component Approach to Characterizing In-Situ Stress at the Utah FORGE Site: Laboratory Modelling and Field Measurements project by The University of Pittsburgh, presented by Andrew Bunger. The project characterizes the stress in the Utah FORGE EGS...
Bunger, A. Energy and Geoscience Institute at the University of Utah
Sep 04, 2024
1 Resources
0 Stars
Publicly accessible

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results

Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible

BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset

The BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset adds node-level energy consumption data from watt-meters to the primary sweep of the BUTTER Empirical Deep Learning Dataset. This dataset contains energy consumption and performance data from 63,52...
Tripp, C. et al National Renewable Energy Laboratory
Dec 30, 2022
9 Resources
1 Stars
Publicly accessible

Utah FORGE 6-3712: Probabilistic Estimation of Seismic Response Using Physics-Informed Recurrent Neural Networks 2024 Annual Workshop Presentation

This is a presentation on the Probabilistic Estimation of Seismic Response Using Physics-Informed Recurrent Neural Networks by GTC Analytics, presented by Jesse Williams. This video slide presentation discusses the development of machine learning-based predictive tools to estimate...
Williams, J. Energy and Geoscience Institute at the University of Utah
Sep 17, 2024
1 Resources
0 Stars
Publicly accessible

Processed Lab Data for Neural Network-Based Shear Stress Level Prediction

Machine learning can be used to predict fault properties such as shear stress, friction, and time to failure using continuous records of fault zone acoustic emissions. The files are extracted features and labels from lab data (experiment p4679). The features are extracted with a n...
Marone, C. et al Pennsylvania State University
May 14, 2021
3 Resources
0 Stars
Publicly accessible

Airfoil Computational Fluid Dynamics 9k shapes, 2 AoA's

This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 8,996 airfoil shapes, computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes ...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible

Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC)

The Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC) data is a collection of 4km hourly wind, solar, temperature, humidity, and pressure fields for the contiguous United States under various climate change scenarios. Sup3rCC is downscaled ...
Buster, G. et al National Renewable Energy Laboratory (NREL)
Apr 19, 2023
7 Resources
2 Stars
Publicly accessible

Altona Field Lab Inverse Model WRR 2020

Includes data for measured inert tracer breakthrough curves first reported in Hawkins (2020) (Water Resources Research). In addition, this submission includes the production well temperature measurements first reported in Hawkins et al. (2017a) (Water Resources Research, volume 53...
Tester, J. Cornell University
Jan 01, 2015
3 Resources
0 Stars
Publicly accessible

Artificial Intelligence for Robust Integration of AMI and Synchrophasor Data to Significantly Boost Solar Adoption

The overarching goal of the project is to create a highly efficient framework of machine learning (ML) methods that provide consistent and accurate real-time knowledge of system states from diverse advanced metering infrastructure (AMI) devices and phasor measurement units (PMUs) ...
Ayyanar, R. et al Arizona State University
Feb 01, 2025
12 Resources
0 Stars
Publicly accessible

National Residential Efficiency Measures Database (REMDB)

This project provides a national unified database of residential building retrofit measures and associated retail prices and end-user might experience. These data are accessible to software programs that evaluate most cost-effective retrofit measures to improve the energy efficien...
Moore, N. et al National Renewable Energy Lab NREL
Sep 29, 2023
5 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439: A Multi-Component Approach to Characterizing In-Situ Stress: Laboratory, Modeling and Field Measurement Workshop Presentation

This is a presentation on A Multi-Component Approach to Characterizing In-Situ Stress at the U.S DOE FORGE EGS Site: Laboratory, Modeling and Field Measurement project by Battelle [Columbus, OH], presented by Mark Kelley. The project's objective was to characterize stress in the U...
Kelley, M. and Bunger, A. Battelle Memorial Institute
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible

Airfoil Computational Fluid Dynamics 2k shapes, 25 AoA's, 3 Re numbers

This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 1,830 airfoil shapes computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes w...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible

Super-Resolution for Renewable Resource Data and Urban Heat Islands (Sup3rUHI)

Super-Resolution for Renewable Resource Data and Urban Heat Islands (Sup3rUHI) introduces machine learning methods to incorporate high-resolution Urban Heat Island (UHI) effects into low-resolution historical reanalysis and future climate model datasets. The dataset includes model...
Buster, G. et al National Renewable Energy Lab (NREL)
Oct 16, 2024
2 Resources
0 Stars
Publicly accessible

Sup3rWind Data (CONUS)

This data contains paired European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) and the Wind Integration National Dataset Toolkit (WTK) images for 2007 and 2010 over two regions in the US, with domain sizes ~800x800 (latitudes from 25.89 to 41.58, and long...
Sinha, S. et al National Renewable Energy Laboratory (NREL)
Jul 16, 2024
6 Resources
0 Stars
Publicly accessible

Programs and Code for Geothermal Exploration Artificial Intelligence

The scripts below are used to run the Geothermal Exploration Artificial Intelligence developed within the "Detection of Potential Geothermal Exploration Sites from Hyperspectral Images via Deep Learning" project. It includes all scripts for pre-processing and processing, including...
Moraga, J. Colorado School of Mines
Apr 27, 2021
11 Resources
0 Stars
Publicly accessible
<< Previous123456Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service