Search OEDI Data
Showing results 1 - 5 of 5.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Imperial Valley Dark Fiber Project Continuous DAS Data
The Imperial Valley Dark Fiber Project acquired Distributed Acoustic Sensing (DAS) seismic data on a ~28 km segment of dark fiber between the cities of Calipatria and Imperial in the Imperial Valley, Southern California. Dark fiber refers to unused optical fiber cables in telecomm...
Ajo-Franklin, J. et al Lawrence Berkeley National Laboratory
Nov 10, 2020
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
G2Aero Database of Airfoils Curated Airfoils
This dataset contains a curated set of 19,164 airfoil shapes from various applications and the data-driven design space of separable shape tensors (PGA space), which can be used as a parameter space for machine-learning applications focused on airfoil shapes.
We constructed the a...
Doronina, O. et al National Renewable Energy Lab NREL
Sep 24, 2024
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
PoroTomo Natural Laboratory Horizontal and Vertical Distributed Acoustic Sensing Data
This dataset includes links to the PoroTomo DAS data in both SEG-Y and hdf5 (via h5py and HSDS with h5pyd) formats with tutorial notebooks for use. Data are hosted on Amazon Web Services (AWS) Simple Storage Service (S3) through the Open Energy Data Initiative (OEDI). Also include...
Feigl, K. et al University of Wisconsin
Mar 29, 2016
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Wind Integration National Dataset (WIND) Toolkit
Wind resource data for North America was produced using the Weather Research and Forecasting Model (WRF). The WRF model was initialized with the European Centre for Medium Range Weather Forecasts Interim Reanalysis (ERA-Interm) data set with an initial grid spacing of 54 km. Thre...
Maclaurin, G. et al National Renewable Energy Laboratory
Sep 26, 2014
6 Resources
1 Stars
Publicly accessible
6 Resources
1 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible