Search OEDI Data
Showing results 26 - 44 of 44.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Net Power (Winter Average)
This shapefile represents seasonal winter average net power estimates.
The OTEC Plant model predicts the net power production at a specific location, given three inputs: surface temperature (°C), depth (m), and difference between warm surface water temperature and cold deep se...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Net Power (Summer Average)
This shapefile represents seasonal summer average net power estimates.
The OTEC Plant model predicts the net power production at a specific location, given three inputs: surface temperature (°C), depth (m), and difference between warm surface water temperature and cold deep se...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Distributed Acoustic Sensing (DAS) of Strain at Earth Tide Frequencies: Laboratory Tests
The solid Earth strains in response to the gravitational pull from the Moon, Sun, and other planetary bodies. Measuring the flexure of geologic material in response to these Earth tides provides information about the geomechanical properties of rock and sediment. Such measurements...
Coleman, T. and Becker, M. California State University
Jan 24, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) Net Power (Annual Average)
This shapefile represents annual average net power estimates.
The OTEC Plant model predicts the net power production at a specific location, given three inputs: surface temperature (°C), depth (m), and difference between warm surface water temperature and cold deep sea water t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Tracking the Sun
Berkeley Lab's Tracking the Sun report series is dedicated to summarizing installed prices and other trends among grid-connected, distributed solar photovoltaic (PV) systems in the United States. The present report, the 11th edition in the series, focuses on systems installed thro...
Barbose, G. and Darghouth, N. Lawrence Berkeley National Laboratory (LBNL)
Oct 01, 2019
6 Resources
1 Stars
Publicly accessible
6 Resources
1 Stars
Publicly accessible
SMP Preparation, Programming, and Characterization
The problem of loss circulation in geothermal wells is inherently challenging due to high temperatures, brittle rocks, and presence of abundant fractures. Because of the inherent challenges in geothermal environments, there are limitations in selecting proper lost circulation mate...
Salehi, S. et al University of Oklahoma
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Typical Solar Years (TSYs) and Typical Wind Years (TWYs) for the Assessment of PV System and Wind Turbine Performance
This dataset comprises Typical Solar Years (TSYs) and Typical Wind Years (TWYs) for the efficient assessment of PV system and wind turbine performance for over 2,000 locations across the U.S. TSYs and TWYs are single synthetic years generated from the National Aeronautics and Spac...
Zeng, Z. et al Argonne National Laboratory
Jul 14, 2024
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Comparative Performance of Four Prototype Mechanical Building Cooling Systems in a Desert Climate
Data and result of approximately fifteen months of monitoring of four houses located in the desert climate of Borrego Springs, California. Four houses were constructed using identical floor plans but differing wall materials, and different cooling systems that were designed to red...
Springer, D. et al Davis Energy
Jul 20, 2016
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Research Report of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin
This is a final report summarizing a one-year (2014-15) DOE funded Geothermal Play Fairway Analysis of the Low-Temperature resources of the Appalachian Basin of New York, Pennsylvania and West Virginia. Collaborators included Cornell University, Southern Methodist University, and...
Jordan, T. et al Cornell University
Sep 30, 2015
22 Resources
0 Stars
Publicly accessible
22 Resources
0 Stars
Publicly accessible
Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB)
This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylva...
E., T. Cornell University
Nov 15, 2015
50 Resources
0 Stars
Publicly accessible
50 Resources
0 Stars
Publicly accessible