Search OEDI Data
Showing results 1 - 9 of 9.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
First Priority Geothermal Target Areas as Identified by ASTER and LANDSAT Thermal Imaging of Parts of Colorado
The CIRES remote sensing unit of the University of Colorado was commissioned by Flint Geothermal LLC to identify areas of warm ground that could signify the thermal signature of "blind" geothermal systems. Using ASTER and LANDSAT data along with other characteristics considered fa...
Hussein, K. Flint Geothermal, LLC
Feb 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
The Use of 3D Geologic Modeling to Improve Well Targeting in Glass Buttes, Oregon
The Glass Buttes Project includes combining a suite of high-resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships. This is aided through geologic observation, modern remote sensing...
Walsh, P. Ormat Nevada Inc
Oct 09, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
2011 Glass Buttes Exploration and Drilling
2011 Geothermal Technologies Program Peer Review Presentation summarizing relevance, proposed approach, and logistics of the Glass Buttes Exploration and Drilling.
Walsh, P. Ormat Nevada Inc
Jan 01, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 3-2535: Building a 3D Resistivity Model for Simulation and Survey Design of EM Measurements
The included report outlines the creation of three 3D resistivity models that will be used to determine the sensitivity of EM measurements for the hypothetical stimulated reservoir at FORGE as well as for EM survey design. FORGE project 3-2535 is planning on using a casing source ...
Alumbaugh, D. et al Lawrence Berkeley National Laboratory
Dec 01, 2022
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
WISE-CASING: Time Domain Reflectometry Data from Lab Experiment on Coaxial Cable
The coaxial-cable experiment conducted in the lab was with 80 m coaxial cable( RG-85). This experiment compares the TDR response between damaged and undamaged cable. For the damaged cable, the damaged section is in the middle (40 m). The amplitude of the data is mV with time (us).
Wu, Y. and Wang, J. Lawrence Berkeley National Laboratory
Mar 15, 2018
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
WISE-CASING: Time Domain Reflectometry Data from Lab Experiment on Steel Pipe
The steel pipe experiment conducted in the lab was using 6 meter low-carbon steel pipe. We tested it with both dry and in-water condition. In the dry experimental setup, a coaxial cable acting as a return path in the air.
Wang, J. and Wu, Y. Lawrence Berkeley National Laboratory
Jul 23, 2019
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
WISE-CASING: Surface Seismic Survey at Cymric Field, California Central Valley
This test was conducted at the Chevron Cymric oilfield in the California central valley near Bakersfield. A reflected seismic signal was observed in all three components (x, y, z) of the 3-component Episensor geophone, as well as all phones on the single component array. The arriv...
Wu, Y. et al Lawrence Berkeley National Laboratory
Apr 02, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Subsurface Temperature Profile
High resolution fiber-optic distributed temperature sensing logs from the Illinois Basin Decatur Project (IBDP) in Decatur, IL were used to model the thermal profile in the Illinois Basin.
Lin, Y. et al University of Illinois
Jun 13, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
WISE-CASING: Seismic Experiment at Richmond Field Station, CA
This experiment is testing the tube waves reflected from the bottom of the well. We put six single-channel geophones on the surface and a 24-channel downhole hydrophone into the well. The well is about 30 meters deep. Just a steel casing in the sand formation, no cement.
Wu, Y. et al Lawrence Berkeley National Laboratory
Apr 25, 2018
32 Resources
0 Stars
Publicly accessible
32 Resources
0 Stars
Publicly accessible