Search OEDI Data
Showing results 1 - 25 of 228.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Geothermal Reservoir Simulation Results in support of Feasibility Study of Direct District Heating for the Cornell Campus Utilizing Deep Geothermal Energy
This dataset contains input data, code, ReadMe files, output data, and figures that summarize the results of a stochastic analysis of geothermal reservoir production from two potential geothermal reservoirs that were evaluated for the Cornell University Deep Direct-Use project. Th...
Smith, J. and Beckers, K. Cornell University
Oct 29, 2019
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
CO2 Push-Pull Single Fault Injection Simulations
ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a ...
Borgia, A. et al Lawrence Berkeley National Laboratory
Sep 21, 2017
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
1D Heat Loss Models Validation Experiment
Contains data from the model validation in the 1D Heat Loss Models to Predict the Aquifer Temperature Profile during Hot/Cold Water Injection Project. The data include two COMSOL models (2D axisymmetric benchmark model and 2D Vinsome model), one python code (1D Vinsome based FEM n...
Chen, K. et al UC Berkeley
Jan 18, 2022
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Numerical Modeling and Uncertainty Analysis using iTOUGH2 for West Virginia University
To reduce the geothermal exploration risk, a feasibility study is performed for a deep direct-use system proposed at the West Virginia University (WVU) Morgantown campus. This study applies numerical simulations to investigate reservoir impedance and thermal production. Because of...
Garapati, N. et al West Virginia University
Dec 20, 2019
13 Resources
0 Stars
Publicly accessible
13 Resources
0 Stars
Publicly accessible
Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada
The vast supply of geothermal energy stored throughout the Earth and the exceedingly long time required to dissipate that energy makes the world's geothermal energy supply nearly limitless. As such, this resource holds the potential to provide a large supply of the world's energy ...
Patterson, J. University of Wisconsin
Jul 11, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Pressure-Temperature Simulation at Brady Hot Springs
These files contain the output of a model calculation to simulate the pressure and temperature of fluid at Brady Hot Springs, Nevada, USA. The calculation couples the hydrologic flow (Darcy's Law) with simple thermodynamics. The epoch of validity is 24 March 2015. Coordinates are ...
Feigl, K. Temple University
Jul 11, 2017
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Thermal-Hydrological-Mechanical Modelling of Stockton University Reservoir Cooling System, Fine Scale Stress Test Modelling
Mesh, properties, initial conditions, injection/withdrawal rates for modelling thermal, hydrological, and mechanical effects of fluid injection to and withdrawal from ground for Stockton University reservoir cooling system (aquifer storage cooling system), Galloway, New Jersey, fo...
Smith, J. et al Lawrence Berkeley National Laboratory
Feb 22, 2021
14 Resources
0 Stars
Publicly accessible
14 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs
Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Thermal Drawdown Induced Flow Channeling in Fractured Geothermal Reservoirs: Rock Mechanics and Rock Engineering
We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal "hydrological" mechanical simulator is used to study the interactions between fluid flow, temperature change, and t...
Fu, P. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Thermal-Hydrological-Mechanical Modelling of Stockton University Reservoir Cooling System, Large Scale Grid
Mesh, properties, initial conditions, injection/withdrawal rates for modeling thermal, hydrological, and mechanical effects of fluid injection to and withdrawal from ground for Stockton University reservoir cooling system (aquifer storage cooling system), Galloway, New Jersey, on ...
Smith, J. et al Lawrence Berkeley National Laboratory
Feb 26, 2021
15 Resources
0 Stars
Publicly accessible
15 Resources
0 Stars
Publicly accessible
Applications of Fractured Continuum Model to Enhanced Geothermal System Heat Extraction Problems
This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environm...
Kalinina, E. et al Sandia National Laboratories
May 06, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article
This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for ...
A., T. Lawrence Livermore National Laboratory
Jun 01, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Final Report Earth Source Heat: A Cascaded Systems Approach to DDU of Geothermal Energy on the Cornell Campus
The purpose of this document is to describe the contents contained within Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) that serves as the final report for the project "Earth Source Heat: A Cascaded Systems Approach to DDU of Geothermal Energy...
Tester, J. et al Cornell University
Oct 27, 2019
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: TOUGH2-CSM Simulation of Embedded Natural Fractures and Chemical Tracer Transport and Sorption
The EGS Collab SIGMA-V project is a multi-lab and university collaborative research project that is being undertaken at the Sanford Underground Research Facility (SURF) in South Dakota. The project consists of studying stimulation, fluid-flow, and heat transfer processes at a scal...
Johnston, B. et al National Renewable Energy Laboratory
Jun 07, 2019
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Chemical Impact of Elevated CO2 on Geothermal Energy Production
Numerical simulations have shown that the use of supercritical CO2 instead of water as a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal energy production and...
Carroll, S. et al Lawrence Livermore National Laboratory
Jan 01, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
An HPC-Based Hydrothermal Finite Element Simulator for Modeling Underground Geothermal Behavior with Example Simulations on The Treasure Island and UC Berkeley Campus
This submission contains the source code of the Hydrothermal Finite Element Simulator used for the Treasure Island and UC Berkeley campus geothermal simulation. It contains a report that summarizes the development and validation of this Hydrothermal Finite Element Simulator, with ...
Chen, K. et al Lawrence Berkeley National Laboratory
Aug 01, 2021
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Coupling Subsurface and Above-Surface Models for Optimizing the Design of Borefields and District Heating and Cooling Systems
Accurate dynamic energy simulation is important for the design and sizing of district heating and cooling systems with geothermal heat exchange for seasonal energy storage. Current modeling approaches in building and district energy simulation tools typically consider heat conduct...
Hu, J. et al Lawrence Berkeley National Laboratory
Jan 31, 2022
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
Reactive Transport Modeling of Aquifer Thermal Energy Storage System at Stockton, NJ
This is the modeling data (input/output files of TOUGHREACT 4.10) used to simulate the reactive transport processes of the Aquifer Thermal Energy Storage (ATES) operations at Stockton University, NJ. Readme.txt lists all the files. TOUGHREACT 4.10 requires to reproduce the modelin...
Kumar, R. et al Lawrence Berkeley National Laboratory
Oct 20, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Community Resilience through Low-Temperature Geothermal Reservoir Thermal Energy Storage
Submitted data include simulations related to underground thermal battery (UTB) simulations described in Modeling and efficiency study of large scale underground thermal battery deployment, presented at GRC, October 2021.
The UTB is comprised of a tank of water, a helical heat ex...
Nico, P. et al Lawrence Berkeley National Laboratory
Jan 29, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Deep Sedimentary Basin EGS Development
Stratigraphic reservoirs with high permeability and temperature at economically accessible depths are attractive for power generation because of their large areal extent (> 100 km2) compared to the fault controlled hydrothermal reservoirs (< 10 km2) found throughout much of the we...
Allis, R. and Moore, J. University of Utah
Jan 24, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Subsurface Geological Information and Models in support of Feasibility Study of Direct District Heating for the Cornell Campus Utilizing Deep Geothermal Energy
This purpose of this set of entries is to group together the materials and analytical methods used in the assessment of the natural rock properties within and surrounding two potential reservoirs.
Jordan, T. et al Cornell University
Oct 27, 2019
27 Resources
0 Stars
Publicly accessible
27 Resources
0 Stars
Publicly accessible
Utah FORGE 3-2535: Building a 3D Resistivity Model for Simulation and Survey Design of EM Measurements
The included report outlines the creation of three 3D resistivity models that will be used to determine the sensitivity of EM measurements for the hypothetical stimulated reservoir at FORGE as well as for EM survey design. FORGE project 3-2535 is planning on using a casing source ...
Alumbaugh, D. et al Lawrence Berkeley National Laboratory
Dec 01, 2022
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Utah FORGE 3-2417: Simulations for Distributed Acoustic Sensing Strain Signatures as an Indicator of Fracture Connectivity
This dataset encompasses simulations of strain signatures from both hydraulically connected and "near-miss" fractures in enhanced geothermal systems (EGS). The files and results are presented from the perspective of digital acoustic sensing's (DAS) potential to differentiate the t...
Ward-Baranyay, M. et al Rice University
Jan 01, 2023
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible