Search OEDI Data
Showing results 1 - 9 of 9.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
BUTTER Empirical Deep Learning Dataset
The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four le...
Tripp, C. et al National Renewable Energy Laboratory
May 20, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset
The BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset adds node-level energy consumption data from watt-meters to the primary sweep of the BUTTER Empirical Deep Learning Dataset. This dataset contains energy consumption and performance data from 63,52...
Tripp, C. et al National Renewable Energy Laboratory
Dec 30, 2022
9 Resources
1 Stars
Curated
9 Resources
1 Stars
Curated
Deep Direct-Use Feasibility Study Economic Analysis using GEOPHIRES for West Virginia University
This dataset contains all the inputs used and output produced from the modified GEOPHIRES for the economic analysis of base case hybrid GDHC system, improved hybrid GDHC system with heat pump and for hot water GDHC.
Software required: Microsoft Notepad, Microsoft Excel and GEOPHI...
Garapati, N. West Virginia University
Jan 09, 2020
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Programs and Code for Geothermal Exploration Artificial Intelligence
The scripts below are used to run the Geothermal Exploration Artificial Intelligence developed within the "Detection of Potential Geothermal Exploration Sites from Hyperspectral Images via Deep Learning" project. It includes all scripts for pre-processing and processing, including...
Moraga, J. Colorado School of Mines
Apr 27, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Error-Level-Controlled Synthetic Forecasts for Renewable Generation
Renewable energy resources, including solar and wind energy, play a significant role in sustainable energy systems. However, the inherent uncertainty and intermittency of renewable generation pose challenges to the safe and efficient operation of power systems. Recognizing the imp...
Zhang, X. et al National Renewable Energy Laboratory (NREL)
Jun 01, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Sup3rWind Data (CONUS)
This data contains paired European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) and the Wind Integration National Dataset Toolkit (WTK) images for 2007 and 2010 over two regions in the US, with domain sizes ~800x800 (latitudes from 25.89 to 41.58, and long...
Sinha, S. et al National Renewable Energy Lab NREL
Jul 16, 2024
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
BuildingsBench: A Large-Scale Dataset of 900K Buildings and Benchmark for Short-Term Load Forecasting
The BuildingsBench datasets consist of:
Buildings-900K: A large-scale dataset of 900K buildings for pretraining models on the task of short-term load forecasting (STLF). Buildings-900K is statistically representative of the entire U.S. building stock.
7 real residential and com...
Emami, P. and Graf, P. National Renewable Energy Laboratory
Dec 31, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
INTEGRATE Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements
The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements) project is developing a new inverse-design capability for the aerodynamic design of wind turbine rotors using invertible neural networks. This AI-based design techno...
Vijayakumar, G. et al National Renewable Energy Laboratory (NREL)
May 04, 2021
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible