Search OEDI Data
Showing results 1 - 25 of 874.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs
Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 6-3629: Application of Machine Learning, Geomechanics, and Seismology for Real-Time Decision Making Tools During Stimulation 2024 Annual Workshop Presentation
This is a presentation on the Cutting Edge Application of Machine Learning, Geomechanics, and Seismology for Real-Time Decision Making Tools During Stimulation by the University of Utah, presented by No'am Zach Dvory. This video slide presentation, by the University of Utah, disc...
Dvory, N. Energy and Geoscience Institute at the University of Utah
Sep 15, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Topology-Based Machine-Learning for Modeling Power-System Responses to Contingencies
This is the companion dataset to the presentation NREL/PR-6A20-77485, which was presented at the 2020 Joint Statistical Meeting on August 3, 2020. Developed for the machine-learning predictive modeling of power-system responses to disruptions, it contains results of power-system c...
BushNational Renewable Energy Laboratory
Aug 01, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Control-based optimization for tethered tidal kite
This submission includes three peer-reviewed (under review) papers from the researchers at North Carolina State University presenting control-based techniques to maximize effectiveness of a tethered tidal kite. Below are the abstracts of each file included in the submission.
Cobb...
Vermillion, C. et al North Carolina State University
Mar 02, 2020
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
StingRAY WEC Risk Register
Risk Registers for major subsystems of the StingRAY WEC completed in compliance with the DOE Risk Management Framework developed by NREL.
Rhinefrank, K. Columbia Power Technologies, Inc.
Feb 24, 2017
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions
This report reviews the training of machine learning algorithms to laboratory triaxial ultrasonic velocity data for Utah FORGE Well 16A(78)-32. Three machine learning (ML) predictive models were developed for the prediction of vertical and two orthogonally oriented horizontal str...
Kelley, M. et al Battelle Memorial Institute
Jun 19, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
StingRAY Failure Mode, Effects and Criticality Analysis: WEC Risk Registers
Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficient...
Rhinefrank, K. Columbia Power Technologies, Inc.
Jul 25, 2016
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Fuel Cell Inverter Transition Between Modes of Operation (Grid-Forming and Grid-Following)
This data set shows the operation of the fuel cell inverter under grid-forming mode of operation, grid-following mode of operation and transition between the two modes.
Nemsow, . et al National Renewable Energy Laboratory
Dec 23, 2024
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32
This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Risk Management Plan and Risk Register for Design Low-Power Wave Energy Converter for Non-Grid Applications
Risk Registers for major subsystems completed according to the methodology described in the Risk Management Plan [DE-EE0008627 D1.2 Risk Management Plan PD v1.1 07-19-2019.pdf], also included here.
Amon, E. Columbia Power Technologies, Inc.
Jul 19, 2019
17 Resources
0 Stars
Publicly accessible
17 Resources
0 Stars
Publicly accessible
Error-Level-Controlled Synthetic Forecasts for Renewable Generation
Renewable energy resources, including solar and wind energy, play a significant role in sustainable energy systems. However, the inherent uncertainty and intermittency of renewable generation pose challenges to the safe and efficient operation of power systems. Recognizing the imp...
Zhang, X. et al National Renewable Energy Laboratory (NREL)
Jun 01, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
StingRAY Updated WEC Risk Registers
Updated Risk Registers for major subsystems of the StingRAY WEC completed according to the methodology described in compliance with the DOE Risk Management Framework developed by NREL.
Rhinefrank, K. and Ondusko, M. Columbia Power Technologies, Inc.
Jun 27, 2018
17 Resources
0 Stars
Publicly accessible
17 Resources
0 Stars
Publicly accessible
Battery Inverter Experimental Data
The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 30 kW off-the-shelf grid following battery inverter in the experiments. We used controllable AC supply...
Prabakar, . et al National Renewable Energy Laboratory
Jan 06, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Fuel Cell Inverter Dataset
This data set contains the three phase AC voltage, three phase AC current, DC voltage and DC current. These data sets were captured during fuel cell inverter operation in grid-connected dispatch, islanded load changes, transition from grid-connected mode to islanded mode and vice-...
Prabakar, . et al National Renewable Energy Laboratory
Oct 21, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
USDA Census of Irrigation
The 2018 Irrigation and Water Management Survey (formerly called the Farm and Ranch Irrigation Survey) is a follow-on to the 2017 Census of Agriculture by the U.S. Department of Agriculture (USDA). This survey provides the only comprehensive information on irrigation activities an...
Census of Irrigation, U. U.S. Department of Agriculture
Oct 19, 2020
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
PV Inverter Experimental Data
The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 20 kW off-the-shelf grid following PV inverter in the experiments. We used controllable AC supply and ...
Prabakar, . et al National Renewable Energy Laboratory
Jan 06, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Split Phase Inverter Data
The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 8.35 kW off-the-shelf grid following split phase PV inverter in the experiments. We used controllable ...
Prabakar, . et al National Renewable Energy Laboratory
Mar 23, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
PV Inverter Experimental Dataset Version 2 with 100 Percent Power
The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 20 kW off-the-shelf grid following PV inverter in the experiments. We used controllable AC supply and ...
Prabakar, . et al National Renewable Energy Laboratory
Nov 10, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico
Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Machine Learning Model Geotiffs Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This submission contains geotiffs, supporting shapefiles and readmes for the inputs and output models of algorithms explored in the Nevada Geothermal Machine Learning project, meant to accompany the final report. Layers include: Artificial Neural Network (ANN), Extreme Learning Ma...
Faulds, J. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
OPFLearnData: Dataset for Learning AC Optimal Power Flow
The datasets are resulting from OPFLearn.jl, a Julia package for creating AC OPF datasets. The package was developed to provide researchers with a standardized way to efficiently create AC OPF datasets that are representative of more of the AC OPF feasible load space compared to t...
Joswig-Jones, . et al National Renewable Energy Laboratory
Oct 26, 2021
12 Resources
0 Stars
Publicly accessible
12 Resources
0 Stars
Publicly accessible
Geochemistry and paleo-geothermal features Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This submission contains the geochemistry dataset and paleo-geothermal features (sinter, travertine, tufa) (shapefiles and symbology) used in the Nevada Geothermal Machine Learning project.
A submission linking the full GitHub repository for our machine learning Jupyter Notebooks...
Faulds, J. and Ayling, B. Nevada Bureau of Mines and Geology
Nov 01, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Brady Geodatabase for Geothermal Exploration Artificial Intelligence
These files contain the geodatabases related to Brady's Geothermal Field. It includes all input and output files for the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (post-proces...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible