OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 1 - 25 of 284.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"Deep Reinforcement Learning"×
Downloadable×

Error-Level-Controlled Synthetic Forecasts for Renewable Generation

Renewable energy resources, including solar and wind energy, play a significant role in sustainable energy systems. However, the inherent uncertainty and intermittency of renewable generation pose challenges to the safe and efficient operation of power systems. Recognizing the imp...
Zhang, X. et al National Renewable Energy Laboratory (NREL)
Jun 01, 2021
3 Resources
0 Stars
Publicly accessible

TEAMER: Experimental Validation and Analysis of Deep Reinforcement Learning Control for Wave Energy Converters

Through this TEAMER project, Michigan Technological University (MTU) collaborated with Oregon State University (OSU) to test the performance of a Deep Reinforcement Learning (DRL) control in the wave tank. Unlike model-based controls, DRL control is model-free and can directly max...
Zou, S. et al Michigan Technological University
Mar 07, 2025
7 Resources
0 Stars
Publicly accessible

Battery Inverter Experimental Data

The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 30 kW off-the-shelf grid following battery inverter in the experiments. We used controllable AC supply...
Prabakar. . et al National Renewable Energy Laboratory
Jan 06, 2023
2 Resources
0 Stars
Publicly accessible

PV Inverter Experimental Dataset Version 2 with 100 Percent Power

The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 20 kW off-the-shelf grid following PV inverter in the experiments. We used controllable AC supply and ...
Prabakar. . et al National Renewable Energy Laboratory
Nov 10, 2023
2 Resources
0 Stars
Publicly accessible

PV Inverter Experimental Data

The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 20 kW off-the-shelf grid following PV inverter in the experiments. We used controllable AC supply and ...
Prabakar. . et al National Renewable Energy Laboratory
Jan 06, 2023
2 Resources
0 Stars
Publicly accessible

Split Phase Inverter Data

The increase in power electronic based generation sources require accurate modeling of inverters. Accurate modeling requires experimental data over wider operation range. We used 8.35 kW off-the-shelf grid following split phase PV inverter in the experiments. We used controllable ...
Prabakar. . et al National Renewable Energy Laboratory
Mar 23, 2023
2 Resources
0 Stars
Publicly accessible

Data Arrays for Microearthquake (MEQ) Monitoring using Deep Learning for the Newberry EGS Sites

The 'Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties' project looks to apply machine learning (ML) methods to Microearthquake (MEQ) data for imaging geothermal reservoir properties and forecasting seismic events, in order to...
Zhu, T. Pennsylvania State University
May 05, 2021
4 Resources
0 Stars
Publicly accessible

BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset

The BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset adds node-level energy consumption data from watt-meters to the primary sweep of the BUTTER Empirical Deep Learning Dataset. This dataset contains energy consumption and performance data from 63,52...
Tripp, C. et al National Renewable Energy Laboratory
Dec 30, 2022
9 Resources
1 Stars
Publicly accessible

EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography

This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Publicly accessible

Processed Lab Data for Neural Network-Based Shear Stress Level Prediction

Machine learning can be used to predict fault properties such as shear stress, friction, and time to failure using continuous records of fault zone acoustic emissions. The files are extracted features and labels from lab data (experiment p4679). The features are extracted with a n...
Marone, C. et al Pennsylvania State University
May 14, 2021
3 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Reports on Stress Prediction and Modeling for Well 16B(78)-32 May 2025

These two reports from the University of Pittsburgh document related efforts under Utah FORGE Project 2-2439v2 to estimate in-situ stresses in well 16B(78)-32 using laboratory data, machine learning models, and physics-based simulations. One report focuses on developing and valida...
Lu, G. et al University of Pittsburgh
Jun 05, 2025
2 Resources
0 Stars
Publicly accessible

Utah FORGE 6-3712: Probabilistic Estimation of Seismic Response Using Physics-Informed Recurrent Neural Networks 2024 Annual Workshop Presentation

This is a presentation on the Probabilistic Estimation of Seismic Response Using Physics-Informed Recurrent Neural Networks by GTC Analytics, presented by Jesse Williams. This video slide presentation discusses the development of machine learning-based predictive tools to estimate...
Williams, J. Energy and Geoscience Institute at the University of Utah
Sep 17, 2024
1 Resources
0 Stars
Publicly accessible

Desert Peak Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to the Desert Peak Geothermal Field. It includes all input and output files used in the project. The files include data categories of raw data, pre-processed data, and analysis (post-processed data). In each of these categories there ar...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
0 Stars
Publicly accessible

Brady Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to Brady's Geothermal Field. It includes all input and output files for the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (post-proces...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
0 Stars
Publicly accessible

Salton Sea Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to Salton Sea Geothermal Field. It includes all input and output files used with the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (po...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
0 Stars
Publicly accessible

Programs and Code for Geothermal Exploration Artificial Intelligence

The scripts below are used to run the Geothermal Exploration Artificial Intelligence developed within the "Detection of Potential Geothermal Exploration Sites from Hyperspectral Images via Deep Learning" project. It includes all scripts for pre-processing and processing, including...
Moraga, J. Colorado School of Mines
Apr 27, 2021
11 Resources
0 Stars
Publicly accessible

Utah FORGE 3-2535: Preliminary Report on Development of a Reservoir Seismic Velocity Model

This report describes the development of a preliminary 3D seismic velocity model at the Utah FORGE site and first results from estimating seismic resolution in the generated fracture volume during Stage 3 of the April 2022 stimulation. A preliminary 3D velocity model for the larg...
Gritto, R. Array Information Technology
Jan 30, 2023
1 Resources
0 Stars
Publicly accessible

Artificial Intelligence for Robust Integration of AMI and Synchrophasor Data to Significantly Boost Solar Adoption

The overarching goal of the project is to create a highly efficient framework of machine learning (ML) methods that provide consistent and accurate real-time knowledge of system states from diverse advanced metering infrastructure (AMI) devices and phasor measurement units (PMUs) ...
Ayyanar, R. et al Arizona State University
Feb 01, 2025
12 Resources
0 Stars
Publicly accessible

Training dataset and results for geothermal exploration artificial intelligence, applied to Brady Hot Springs and Desert Peak

The submission includes the labeled datasets, as ESRI Grid files (.gri, .grd) used for training and classification results for our machine leaning model: brady_som_output.gri, brady_som_output.grd, brady_som_output.* desert_som_output.gri, desert_som_output.grd, desert_som_outpu...
Moraga, J. et al Colorado School of Mines
Sep 01, 2020
16 Resources
0 Stars
Publicly accessible

Renewable Energy Potential Model: Geothermal Supply Curves

The Renewable Energy Potential (reV) model is a geospatial platform for estimating technical potential and developing renewable energy supply curves, initially developed for wind and solar technologies. The model evaluates deployment constraints, considering land use, environmenta...
Trainor-Guitton, W. et al National Renewable Energy Laboratory
Aug 21, 2023
3 Resources
0 Stars
Publicly accessible

Appendices for Geothermal Exploration Artificial Intelligence Report

The Geothermal Exploration Artificial Intelligence looks to use machine learning to spot geothermal identifiers from land maps. This is done to remotely detect geothermal sites for the purpose of energy uses. Such uses include enhanced geothermal system (EGS) applications, especia...
Duzgun, H. et al Colorado School of Mines
Jan 08, 2021
12 Resources
0 Stars
Publicly accessible

Sup3rWind Data (CONUS)

This data contains paired European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) and the Wind Integration National Dataset Toolkit (WTK) images for 2007 and 2010 over two regions in the US, with domain sizes ~800x800 (latitudes from 25.89 to 41.58, and long...
Sinha, S. et al National Renewable Energy Laboratory (NREL)
Jul 16, 2024
6 Resources
0 Stars
Publicly accessible

GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico

Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible

Machine Learning Model Geotiffs Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains geotiffs, supporting shapefiles and readmes for the inputs and output models of algorithms explored in the Nevada Geothermal Machine Learning project, meant to accompany the final report. Layers include: Artificial Neural Network (ANN), Extreme Learning Ma...
Faulds, J. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
0 Stars
Publicly accessible

Geochemistry and paleo-geothermal features Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains the geochemistry dataset and paleo-geothermal features (sinter, travertine, tufa) (shapefiles and symbology) used in the Nevada Geothermal Machine Learning project. A submission linking the full GitHub repository for our machine learning Jupyter Notebooks...
Faulds, J. and Ayling, B. Nevada Bureau of Mines and Geology
Nov 01, 2020
2 Resources
0 Stars
Publicly accessible
12345Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service