"Womp Womp! Your browser does not support canvas :'("

Deep Green Unannotated Protein Structures

Publicly accessible License 

The Deep Green list is based on the identification and curation of conserved unannotated proteins in three green lineage (Viridiplantae) model organisms; Arabidopsis thaliana, Chlamydomonas reinhardtii, and Setaria viridis. Preliminary characterization of Deep Green proteins and genes was done using various informatics tools and published data sets and is presented in Knoshaug, Sun, et al., 2023, submitted. The structures of these unannotated proteins were also predicted using AlphaFold (Jumper et al., 2021). The data deposited here are the AlphaFold structural predictions having the highest pLDDT score and thus identified as the best folded structure (ranked_0). These data enable others to do in-depth structural characterizations to aid in functional characterization leading to deeper understanding of plant biology. References: Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., ?ídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596:583-589. Knoshaug, E. P., Sun, P., Nag, A., Nguyen, H., Mattoon, E. M., Zhang, N., Liu, J., Chen, C., Cheng, J., Zhang, R., St. John, P., and Umen, J. (submitted) Identification and preliminary characterization of conserved uncharacterized proteins from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Setaria viridis.

Citation Formats

TY - DATA AB - The Deep Green list is based on the identification and curation of conserved unannotated proteins in three green lineage (Viridiplantae) model organisms; Arabidopsis thaliana, Chlamydomonas reinhardtii, and Setaria viridis. Preliminary characterization of Deep Green proteins and genes was done using various informatics tools and published data sets and is presented in Knoshaug, Sun, et al., 2023, submitted. The structures of these unannotated proteins were also predicted using AlphaFold (Jumper et al., 2021). The data deposited here are the AlphaFold structural predictions having the highest pLDDT score and thus identified as the best folded structure (ranked_0). These data enable others to do in-depth structural characterizations to aid in functional characterization leading to deeper understanding of plant biology. References: Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596:583-589. Knoshaug, E. P., Sun, P., Nag, A., Nguyen, H., Mattoon, E. M., Zhang, N., Liu, J., Chen, C., Cheng, J., Zhang, R., St. John, P., and Umen, J. (submitted) Identification and preliminary characterization of conserved uncharacterized proteins from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Setaria viridis. AU - Knoshaug A2 - Sun A3 - Nag A4 - Nguyen A5 - Mattoon A6 - Zhang A7 - Liu A8 - Chen A9 - Cheng A10 - Zhang A11 - St. John A12 - Umen DB - Open Energy Data Initiative (OEDI) DP - Open EI | National Renewable Energy Laboratory DO - KW - Donald Danforth Plant Science Center KW - unannotated proteins KW - protein structure KW - Arabidopsis thaliana KW - Setaria viridis KW - Chlamydomonas reinhardtii KW - energy crop KW - model species KW - green lineage KW - AlphaFold LA - English DA - 2023/04/20 PY - 2023 PB - National Renewable Energy Laboratory T1 - Deep Green Unannotated Protein Structures UR - https://data.openei.org/submissions/8267 ER -
Export Citation to RIS
Knoshaug, et al. Deep Green Unannotated Protein Structures. National Renewable Energy Laboratory, 20 April, 2023, NREL. https://data.nrel.gov/submissions/216.
Knoshaug, Sun, Nag, Nguyen, Mattoon, Zhang, Liu, Chen, Cheng, Zhang, St. John, & Umen. (2023). Deep Green Unannotated Protein Structures. [Data set]. NREL. National Renewable Energy Laboratory. https://data.nrel.gov/submissions/216
Knoshaug, Sun, Nag, Nguyen, Mattoon, Zhang, Liu, Chen, Cheng, Zhang, St. John, and Umen. Deep Green Unannotated Protein Structures. National Renewable Energy Laboratory, April, 20, 2023. Distributed by NREL. https://data.nrel.gov/submissions/216
@misc{OEDI_Dataset_8267, title = {Deep Green Unannotated Protein Structures}, author = {Knoshaug and Sun and Nag and Nguyen and Mattoon and Zhang and Liu and Chen and Cheng and Zhang and St. John and Umen}, abstractNote = {The Deep Green list is based on the identification and curation of conserved unannotated proteins in three green lineage (Viridiplantae) model organisms; Arabidopsis thaliana, Chlamydomonas reinhardtii, and Setaria viridis. Preliminary characterization of Deep Green proteins and genes was done using various informatics tools and published data sets and is presented in Knoshaug, Sun, et al., 2023, submitted. The structures of these unannotated proteins were also predicted using AlphaFold (Jumper et al., 2021). The data deposited here are the AlphaFold structural predictions having the highest pLDDT score and thus identified as the best folded structure (ranked_0). These data enable others to do in-depth structural characterizations to aid in functional characterization leading to deeper understanding of plant biology.\ References:\ Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., ?ídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596:583-589.\ Knoshaug, E. P., Sun, P., Nag, A., Nguyen, H., Mattoon, E. M., Zhang, N., Liu, J., Chen, C., Cheng, J., Zhang, R., St. John, P., and Umen, J. (submitted) Identification and preliminary characterization of conserved uncharacterized proteins from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Setaria viridis.}, url = {https://data.nrel.gov/submissions/216}, year = {2023}, howpublished = {NREL, National Renewable Energy Laboratory, https://data.nrel.gov/submissions/216}, note = {Accessed: 2025-05-04} }

Details

Data from Apr 20, 2023

Last updated Jan 17, 2025

Submitted Apr 20, 2023

Organization

National Renewable Energy Laboratory

Contact

Eric Knoshaug

Authors

Knoshaug

National Renewable Energy Laboratory

Sun

Donald Danforth Plant Science Center

Nag

National Renewable Energy Laboratory

Nguyen

Donald Danforth Plant Science Center

Mattoon

Donald Danforth Plant Science Center

Zhang

Donald Danforth Plant Science Center

Liu

University of Missouri - Columbia

Chen

University of Missouri - Columbia

Cheng

University of Missouri - Columbia

Zhang

Donald Danforth Plant Science Center

St. John

National Renewable Energy Laboratory

Umen

Donald Danforth Plant Sciences Center

Research Areas

DOE Project Details

Project Name Deep Green: Structural and Functional Genomic Characterization of Conserved Unannotated Green Lineage Proteins

Project Number ERW9098

Share

Submission Downloads