OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • FAQ
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 1 - 25 of 61.
Show results per page.
Order by:
Relevance Most Recent
Availability:
All Results Available Now
Filters
Research Areas
Accessibility
Data Type
Organization
Source
"machine learning"×

GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico

Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
Publicly accessible

Geochemistry and paleo-geothermal features Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains the geochemistry dataset and paleo-geothermal features (sinter, travertine, tufa) (shapefiles and symbology) used in the Nevada Geothermal Machine Learning project. A submission linking the full GitHub repository for our machine learning Jupyter Notebooks...
Faulds, J. et al Nevada Bureau of Mines and Geology
Nov 01, 2020
2 Resources
Publicly accessible

Potential structures Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains shapefiles, geotiffs, and symbology for the revised-from-Play-Fairway potential structures/structural settings used in the Nevada Geothermal Machine Learning project. Layers include potential structural setting ellipses, centroids, and distance-to-centroid...
Faulds, J. and Coolbaugh, M. Nevada Bureau of Mines and Geology
Feb 20, 2021
3 Resources
Publicly accessible

GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources

Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
Publicly accessible

Dataset for Evaluation of Extreme Weather Impacts on Utility-Scale Photovoltaic Plant Performance in the United States

This dataset is a fusion of three data types (operations and maintenance tickets, weather data, and production data) that was used to support machine learning analysis and evaluation of drivers for low performance at photovoltaic (PV) sites during compound, extreme weather events....
Gunda, T. and Jackson, N. Sandia National Laboratories
Apr 01, 2021
2 Resources
Publicly accessible

Data Arrays for Microearthquake (MEQ) Monitoring using Deep Learning for the Newberry EGS Sites

The 'Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties' project looks to apply machine learning (ML) methods to Microearthquake (MEQ) data for imaging geothermal reservoir properties and forecasting seismic events, in order to...
Zhu, T. Pennsylvania State University
May 05, 2021
4 Resources
Publicly accessible

Training dataset and results for geothermal exploration artificial intelligence, applied to Brady Hot Springs and Desert Peak

The submission includes the labeled datasets, as ESRI Grid files (.gri, .grd) used for training and classification results for our machine leaning model: brady_som_output.gri, brady_som_output.grd, brady_som_output.* desert_som_output.gri, desert_som_output.grd, desert_som_outpu...
Moraga, J. et al Colorado School of Mines
Sep 01, 2020
16 Resources
Publicly accessible

Active Source Seismic (Ultrasonic) Data from Double-Direct Shear Lab Experiments

Active source ultrasonic data from lab experiments p5270 and p5271 including raw waveforms (WF) and mechanical data (mat). From the PSU team working on the "Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties" project. The fric...
Marone, C. Pennsylvania State University
May 05, 2021
1 Resources
Publicly accessible

GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files

This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
Publicly accessible

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs

Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
Publicly accessible

Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk

In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
Publicly accessible

BUTTER Empirical Deep Learning Dataset

The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four le...
Tripp, C. et al National Renewable Energy Laboratory
May 20, 2022
3 Resources
Publicly accessible

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results

Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
Publicly accessible

Processed Lab Data for Neural Network-Based Shear Stress Level Prediction

Machine learning can be used to predict fault properties such as shear stress, friction, and time to failure using continuous records of fault zone acoustic emissions. The files are extracted features and labels from lab data (experiment p4679). The features are extracted with a n...
Marone, C. et al Pennsylvania State University
May 14, 2021
3 Resources
Publicly accessible

Altona Field Lab Inverse Model WRR 2020

Includes data for measured inert tracer breakthrough curves first reported in Hawkins (2020) (Water Resources Research). In addition, this submission includes the production well temperature measurements first reported in Hawkins et al. (2017a) (Water Resources Research, volume 53...
Tester, J. Cornell University
Jan 01, 2015
3 Resources
Publicly accessible

Brady Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to Brady's Geothermal Field. It includes all input and output files for the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (post-proces...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
Publicly accessible

Desert Peak Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to the Desert Peak Geothermal Field. It includes all input and output files used in the project. The files include data categories of raw data, pre-processed data, and analysis (post-processed data). In each of these categories there ar...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
Publicly accessible

Salton Sea Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to Salton Sea Geothermal Field. It includes all input and output files used with the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (po...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
Publicly accessible

Appendices for Geothermal Exploration Artificial Intelligence Report

The Geothermal Exploration Artificial Intelligence looks to use machine learning to spot geothermal identifiers from land maps. This is done to remotely detect geothermal sites for the purpose of energy uses. Such uses include enhanced geothermal system (EGS) applications, especia...
Duzgun, H. et al Colorado School of Mines
Jan 08, 2021
12 Resources
Publicly accessible

EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography

This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
Publicly accessible

High-Fidelity Building Emulator

This dataset provides high-fidelity time series data for an emulated commercial office building sited in the Chicago, IL area during a Typical Meteorological Year (TMY). This dataset consists of air-side HVAC measurements and control inputs, and it includes normal operations as w...
Bakker, C. et al Building Technologies Office (BTO)
Jun 15, 2022
1 Resources
Publicly accessible

Programs and Code for Geothermal Exploration Artificial Intelligence

The scripts below are used to run the Geothermal Exploration Artificial Intelligence developed within the "Detection of Potential Geothermal Exploration Sites from Hyperspectral Images via Deep Learning" project. It includes all scripts for pre-processing and processing, including...
Moraga, J. Colorado School of Mines
Apr 27, 2021
11 Resources
Publicly accessible

April 2013 Green Machine Florida Canyon Hourly Data

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant...
Vanderhoff, A. ElectraTherm, Inc.
Apr 24, 2013
1 Resources
Publicly accessible

May 2013 Green Machine Florida Canyon Hourly Data

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant...
Vanderhoff, A. ElectraTherm, Inc.
May 30, 2013
1 Resources
Publicly accessible

June 2013 Green Machine Florida Canyon Hourly Data

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant...
Vanderhoff, A. ElectraTherm, Inc.
Jul 15, 2013
1 Resources
Publicly accessible
123Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.