Search OEDI Data
Showing results 1 - 25 of 275.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Utah FORGE 2-2446: Closing the Loop Between In-situ Stress Complexity and EGS Fracture Complexity Workshop Presentation
This is a presentation on the Closing the Loop Between In-situ Stress Complexity and EGS Fracture Complexity project by Lawrence Livermore National Laboratory, presented by Dr. Matteo Cusini. The project's objective was to employ a combination of high-fidelity simulations and true...
Cusini, M. and Bunger, A. Lawrence Livermore National Laboratory
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 2-2446: Closing the Loop Between In-Situ Stress Complexity and EGS Fracture Complexity 2024 Annual Workshop Presentation
This is a presentation on Closing the Loop Between In-Situ Stress Complexity and EGS Fracture Complexity by Lawrence Livermore National Laboratory, presented by Matteo Cusini. The video discusses the combination of high-fidelity simulations and true-triaxial block fracturing tests...
Cusini, M. et al Energy and Geoscience Institute at the University of Utah
Aug 26, 2024
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Reactive Transport Simulations of High-Tempertature Geologic Thermal Energy Storage (GeoTES) in Deep Saline Formations I/O Files
Simulation input and output files, post-processed figures and excel tables, and tecplot layout files for generating figures. These simulations were run with TOUGHREACT V4.12 by Lawrence Berkeley National Laboratory in 2021. This work was completed as part of the geologic thermal e...
Spycher, N. and Doughty, C. Lawrence Berkeley National Laboratory
Dec 31, 2021
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
SMP and Fracture Modeling
The problem of loss circulation in geothermal wells is inherently challenging due to high temperatures, brittle rocks, and presence of abundant fractures. Because of the inherent challenges in geothermal environments, there are limitations in selecting proper lost circulation mate...
Salehi, S. et al University of Oklahoma
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Utah FORGE: Phase Native State FALCON Model Files
The submission includes FALCON input file and mesh for the an initial pressure-temperature simulation, and a second set for pressure-temperature-displacement simulation. All simulations are steady state. Data and input for the FORGE Phase 2 native state model were compiled from hi...
Podgorney, R. Idaho National Laboratory
Jun 06, 2019
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Community Resilience through Low-Temperature Geothermal Reservoir Thermal Energy Storage
Submitted data include simulations related to underground thermal battery (UTB) simulations described in Modeling and efficiency study of large scale underground thermal battery deployment, presented at GRC, October 2021.
The UTB is comprised of a tank of water, a helical heat ex...
Nico, P. et al Lawrence Berkeley National Laboratory
Jan 29, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Geomechanical Modeling for Thermal Spallation Drilling
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling,...
Walsh, S. et al Lawrence Livermore National Laboratory
Aug 24, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs
Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: TOUGH2-CSM Simulation of Embedded Natural Fractures and Chemical Tracer Transport and Sorption
The EGS Collab SIGMA-V project is a multi-lab and university collaborative research project that is being undertaken at the Sanford Underground Research Facility (SURF) in South Dakota. The project consists of studying stimulation, fluid-flow, and heat transfer processes at a scal...
Johnston, B. et al National Renewable Energy Laboratory
Jun 07, 2019
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Utah FORGE Project 3-2417: Simulations for Distributed Acoustic Sensing Strain Signatures as an Indicator of Fracture Connectivity
This dataset encompasses simulations of strain signatures from both hydraulically connected and "near-miss" fractures in enhanced geothermal systems (EGS). The files and results are presented from the perspective of digital acoustic sensing's (DAS) potential to differentiate the t...
Ward-Baranyay, M. et al Rice University
Jan 01, 2023
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
GEOPHIRES Simulations for Deep Direct Use (DDU) Projects
This folder contains the GEOPHIRES codes and input files for running the base case scenarios for the six deep direct-use (DDU) projects. The six DDU projects took place during 2017-2020 and were funded by the U.S. Department of Energy Geothermal Technologies Office. They investiga...
Beckers, K. National Renewable Energy Laboratory
Jun 30, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Geothermal Reservoir Simulation Results in support of Feasibility Study of Direct District Heating for the Cornell Campus Utilizing Deep Geothermal Energy
This dataset contains input data, code, ReadMe files, output data, and figures that summarize the results of a stochastic analysis of geothermal reservoir production from two potential geothermal reservoirs that were evaluated for the Cornell University Deep Direct-Use project. Th...
Smith, J. and Beckers, K. Cornell University
Oct 29, 2019
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
GEOPHIRES files for DDU techno-economic simulations
During 2017-2019, the U.S. Department of Energy funded six geothermal deep direct-use (DDU) projects to investigate feasibility of DDU for heating, cooling and thermal storage in the United States. In a follow-on study conducted at the National Renewable Energy Laboratory (NREL), ...
Beckers, K. and Kolker, A. National Renewable Energy Laboratory
Mar 31, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
CO2 Push-Pull Dual (Conjugate) Faults Injection Simulations
This submission contains datasets and a final manuscript associated with a project simulating carbon dioxide push-pull into a conjugate fault system modeled after Dixie Valley-
sensitivity analysis of significant parameters and uncertainty prediction by data-worth analysis.
Datas...
Oldenburg, C. et al Lawrence Berkeley National Laboratory
Jul 20, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
EGS Collab: Modeling and Simulation Working Group Teleconference Series (1-98)
This submission contains the presentation slides and recordings from the first 98 EGS Collab Modeling and Simulation Working Group teleconferences. These teleconferences served three objectives for the project: 1) share simulation results, 2) communicate field activities and resul...
White, M. et al Pacific Northwest National Laboratory
Feb 04, 2020
100 Resources
0 Stars
Publicly accessible
100 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Preliminary Geothermal Reservoir Model
Preliminary geothermal reservoir simulations were performed using a homogeneous static model to evaluate and understand the effects of fluid and rock properties that could influence the delivery of thermal energy in a doublet system. A 5000 feet by 5100 feet by 500 feet homogeneou...
Okwen, R. University of Illinois
May 08, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Final Report Earth Source Heat: A Cascaded Systems Approach to DDU of Geothermal Energy on the Cornell Campus
The purpose of this document is to describe the contents contained within Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) that serves as the final report for the project "Earth Source Heat: A Cascaded Systems Approach to DDU of Geothermal Energy...
Tester, J. et al Cornell University
Oct 27, 2019
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Sustainable Self-Propping Shear Zones in EGS: Chlorite, Illite, and Biotite Rates and Report
Spreadsheet containing chlorite, illite, and biotite rate data and rate equations that can be used in reactive transport simulations. Submission includes a report on the development of the rate laws.
Carroll, S. and Smith, M. Lawrence Livermore National Laboratory
Nov 06, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Self-Healing and Re-Adhering Polymer-Cements with Improved Toughness
Polymer-cement experiments were conducted in order to assess the chemical and thermal properties of various polymer-cement composites. This file set includes the following polymer-cement analyses:
Polymer-Cement Composite Synthesis
Polymer-Cement Interactions by Atomistic Simulat...
Fernandez, C. Pacific Northwest National Laboratory
Nov 11, 2015
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
Hydraulic Studies of Drilling Microbores with Supercritical Steam, Nitrogen and Carbon Dioxide
Hydraulic studies of drilling micropores at various depths and with various hole sizes, tubing, fluids and rates to show theoretical feasibility.
WELLFLO Simulations Report separated into three parts:
Step 4: Drilling 10,000 ft Wells with Supercritical Steam, Nitrogen, and Carbon...
Karaaslan, M. Impact Technologies LLC
Jan 01, 2010
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Applications of Fractured Continuum Model to Enhanced Geothermal System Heat Extraction Problems
This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environm...
Kalinina, E. et al Sandia National Laboratories
May 06, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Performance, Cost, and Financial Parameters of Geothermal District Heating Systems for Market Penetration Modeling under Various Scenarios
The U.S. Department of Energy Geothermal Vision (GeoVision) Study is currently looking at the potential to increase geothermal deployment in the U.S. and to understand the impact of this increased deployment. This paper reviews 31 performance, cost, and financial parameters as inp...
Beckers, K. and Young, K. National Renewable Energy Laboratory
Mar 23, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible